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Abstract—In this letter, we study the consensus-based leader-fol-
lower algorithm in mobile sensor networks, where the goal for the
entire network is to converge to the state of a leader. We capture
the mobility in the leader-follower algorithm by abstracting it as a
Linear Time-Varying (LTV) system with random system matrices.
In particular, a mobile node, moving randomly in a bounded re-
gion, updates its state when it finds neighbors; and does not update
when it is not in the communication range of any other node. In
this context, we develop certain regularity conditions on the system
and input matrices such that each follower converges to the leader
state. To analyze the corresponding LTV system, we partition the
entire chain of systemmatrices into non-overlapping slices, and re-
late the convergence of the sensor network to the lengths of these
slices. In contrast to the existing results, we show that a bounded
length on the slices, capturing the dissemination of information
from the leader to the followers, is not required; as long as the
slice-lengths are finite and do not grow faster than a certain ex-
ponential rate.
Index Terms—Data fusion, distributed algorithms, LTV systems,

sensor networks.

I. INTRODUCTION

A MOBILE sensor network is composed of a collection of
mobile nodes with possibly limited sensing, communica-

tions, and computation capabilities. Since sensor mobility is be-
coming increasingly important in many practical applications,
[1]–[4], e.g., monitoring a hazardous environment where a static
network can not be deployed, mobile sensor networks have at-
tracted a significant research attention in recent years.
In sensor networks, it is often desirable that the entire net-

work reaches an agreement regarding a quantity of interest. This
problem is referred to as consensus, with applications in, e.g.,
hypothesis testing, [5]–[7], estimation, [8], [9], and diffusion,
[10]; consensus-related literature includes [11]–[16]. In some
applications, sensors should be guided to a target state by in-
troducing leaders, [17], [18]. The leader plays the role of an
input whose influence is propagated throughout the network via
a distributed algorithm, specifying the information exchange be-
tween a sensor and its neighbors, [19]. Related work on the
conditions under which the sensor states converge to the leader
state can be found in [20]–[24]; see [25] for running-consensus
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that incorporates time-varying measurements in the (non-mo-
bile) sensor updates, and also [26], [27], for second-order con-
sensus algorithms. In particular, Ref. [20] shows that the net-
work converges to the state of the leader if there exists an infinite
sequence of contiguous, non-overlapping and bounded time in-
tervals with the property that the union of the graphs across each
interval is strongly-connected.
Subsequently, Refs. [21], [22] extend the results in [20] to

directed graphs, and prove that the coordination is possible
if the union of the interaction graphs has a spanning tree fre-
quently enough. Ref. [23] presents a graph-theoretic approach
to study consensus in dynamically changing environments,
where each graph can be represented by a stochastic matrix.
Ref. [24] studies the convergence of the product of asymmetric
stochastic matrices, and relates the convergence rate to the
second largest eigenvalue of the product.
In this letter, we consider a leader-follower problem where

the sensors move randomly in a bounded region of interest and
have a limited communication range. We assume gossip-based
communication, which is widely used due to its simplicity and
robustness, [28]. In particular, we assume that only one sensor
at each iteration exchanges information with nearby sensors
and updates its state. Since the motion is random, a sensor
may not find neighbors at all times and an arbitrary sensor may
not communicate with a leader at any given time. This leads
to different update scenarios, which we discuss thoroughly in
Section II. We abstract this updating procedure by a Linear
Time-Varying (LTV) system and develop the conditions under
which this LTV system converges to the leader state regardless
of the initial conditions. In contrast to a majority of the existing
work, which deals with non-negative, stochastic matrices, the
system matrices in a dynamic leader-follower algorithm are
both stochastic or sub-stochastic, due to which the results
focusing on stochastic matrices alone are not applicable.
In order to develop the results for sub-stochastic matrices,

we introduce the notion of non-overlapping slices–the smallest
product of consecutive system matrices that covers the system
matrices and has an infinity norm of less than one. One such
complete slice implies information propagation from the leader
to every other node. Clearly, if this information dissemina-
tion is completed in a bounded time, i.e., the slices have a
uniform bound on their lengths, then the information from
the leader reaches the entire network infinitely often and the
asymptotic behavior can be developed rather straightforwardly.
An important contribution of this paper is to show that the
(dynamic) leader-follower algorithm converges even when the
slice lengths are unbounded; what is required is that the slices
do not grow larger at a rate faster than a certain exponential
growth. In other words, the information from the leader reaches
the rest of the network in an unbounded number of steps, the
rate of which is explicitly characterized.
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We now describe the rest of the letter. Section II formulates
the problem, and describes the local updates and the (network)
dynamics of the leader-follower algorithm. In Section III, we
study the convergence of the sensor network to the leader state,
and provide the sufficient conditions to achieve convergence.
Simulation results are presented in Section IV, and finally
Section V concludes the paper.

II. PROBLEM FORMULATION

Consider a network with followers (sensors) in the set ,
and one leader. We assume that all of the nodes (leader and fol-
lowers) move arbitrarily and the followers exchange informa-
tion if they find a nearby node. For the th follower, let
be the set of neighbors (not including follower ) at time . We
also define .
Leader-follower dynamics: The leader’s state is fixed,

whereas the state of a follower is influenced by its neighbors.
Note that due to mobility, it is not guaranteed for a follower
to find a leader among its neighbors at any time . In fact, at
a given time, it is possible that a follower does not have any
neighbor. Let be the state of the th follower at time
and let be the leader state. The updating follower,

, implements the following:
(i) Follower keeps its state when it has no neighbor:

(1)

(ii) With no leader among neighbors, the state-update is

(2)

(iii) With the leader among neighbors, the state-update is

(3)

where is the leader state, ’s and ’s, are
the coefficients assigned by the updating follower to the
followers and the leader, respectively. The above update
can be abstracted by the following LTV system:

(4)

where is the state of the followers at time ;
and are the time-varying

system and input matrices, respectively.
Assumptions: We make the following assumptions:
A0: The state-update is a linear-convex combination, i.e.,

(5)

A1: When there is no leader among the neighbors, then

(6)

A2: When a leader is involved in an update, it always con-
tributes a certain amount of information, i.e.,

(7)

Remarks: The above assumptions are realistic and rather
common in the related literature. While stochasticity is standard
in sensor fusion and relevant applications, see e.g., [17], [18],
[29], Eq. (6) implies that when a state update occurs without

a leader, a non-zero self-weight is always assigned to the
(updating) follower’s current state. This assumption does not
allow a follower to completely forget its past information. Note
that Assumption A1 is required to maintain sub-stochasticity
of the process and is necessary for each follower that does
not directly communicate with the leader. This is because this
follower can lose information received (indirectly) from the
leader by updating with neighbors that do not have any such
information. Next, Eq. (7) restricts the amount of (unreliable)
information received from other neighboring followers by
guaranteeing that a certain information is always contributed
by the leader. We note that it is possible for multiple followers
to update at the same time and the assumption that only one
follower updates is without loss of generality. Note that random
motion in a bounded region is equivalent to saying that each
follower communicates intermittently with other nodes with a
non-zero probability. If a subset of followers is isolated, and
never communicates with the rest of the network, this subset
does not follow the convergence.
Under the above assumptions the LTV system matrices,

’s, are always non-negative, and may be identity-when no
update occurs; stochastic-when there is no leader among the
neighbors; and, sub-stochastic-when the neighbors include the
leader. In the next section, we provide a framework to study
the convergence of the leader-follower algorithm represented
in Eq. (4), under Assumptions A0-A2.

III. CONVERGENCE
We now provide a related result on the convergence of an

infinite product of stochastic and sub-stochastic matrices, [30],
that will be used to study Eq. (4).

A. Infinite Product of (Sub-) Stochastic Matrices
In what follows, we discuss , in the

context of Eq. (4). A common approach to study an infinite
product of such matrices is via the Joint Spectral Radius (JSR),
[31], which, in general, is NP-hard, even in special cases, [32].
We thus introduce an alternative approach, [30], which relates
the norm properties of subsets of system matrices to the con-
vergence of the infinite product of system matrices. In partic-
ular, we partition the entire sequence of system matrices into
non-overlapping slices. We define a slice as the smallest product
of system matrices such that: (i) each slice is initiated by a
sub-stochastic matrix; (ii) each slice has a subunit infinity norm;
and, (iii) the slices cover all of the system matrices. We denote
the th slice by , with length . Using slices, we intro-
duce a new time index, , and study

(8)

instead of . Slice construction is illus-
trated in Fig. 1, where the th slice length may be defined as

.
For a given slice, , we have the largest upper bound on the

infinity norm of the slice as

(9)

which is strictly less than one, for any , [30], given
that and in the above follow A0-A2. Therefore, the con-
vergence of the product of slices is characterized by the length
of the slices, and by and . For instance, it can be verified
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Fig. 1. Slice representation.

that , when either or is 0. On the other hand,
when , are non-zero, we get , for any finite
slice length, . We note that if each slice length has a uni-
form upper bound, i.e., , as is assumed in
[20], [21], [22], then , for some , and
the asymptotic stability of Eq. (4) is rather straightforward, e.g.,
by using the sub-multiplicative norm property. However, since
we have an explicit expression for the infinity-norm bound in
Eq. (9), a more general result can be developed that does not
require such a uniform bound. We provide this result in the fol-
lowing theorem, and refer the reader to [30] for a detailed proof:
Theorem 1: With Assumptions A0-A2, Eq. (8) converges to

zero if there exists a subset of slices, denoted by , such that
for every , and ,

(10)

for , , chosen such that .
Unbounded connectivity: The complete proof of this the-

orem is beyond the scope of this short letter. In this letter, we
derive an extension of Theorem 1 to the dynamic leader-fol-
lower algorithm. The theorem’s statement can be interpreted
with the help of the unbounded connectivity notion explained
as follows. The infinite product of slices converges to zero, if
for every , there exist a slice in , with length following
Eq. (10), in no particular order. This implies that the slice lengths
can be unbounded as long as a well-behaved subset of slices
exist whose lengths do not grow faster than the right hand side
of Eq. (10). Note that a longer slice length corresponds to the
slower flow of information in the network.

B. Leader-Follower Convergence
We now study the dynamic leader-follower algorithm.
Theorem 2: Consider followers and one leader moving in

a finite and bounded region with follower state updates given
in Eqs. (1)–(3). Then, for any random (or deterministic) motion
that satisfies Eq. (10) on the corresponding slices, the followers
(asymptotically) converge to the leader state.

Proof: The random motion of the agents in a finite,
bounded region results in the following LTV system:

(11)

where is the state of the leader, and is random and may be
either identity, stochastic, or sub-stochastic. Hence,

(12)

by Theorem 1. What is left to show is that when Eq. (12) holds
and the leader state is fixed, all agents converge to the leader

state. Using the slice notation, we may use a new time index, ,
and rewrite Eq. (11) as

(13)

such that and

(14)

(15)

(16)

with . For simplicity, let us represent the
th slice in Eq. (15) as:

such that . In addition,
we can rewrite Eqs. (11) and (13) as

respectively. In Eq. (13), asymptotically converges to a
limit, say , because is a constant, and the spectral radius,

, of the th slice is strictly less than one, under the condi-
tions of Theorem 1, i.e.,

(17)

Thus, . Note that for any given we can
find the corresponding from Eq. (14), and we have

(18)

in which denotes the identity matrix. Therefore,

(19)

Note that is invertible due to Eq. (17). In order to show
that the limiting states of the follower are indeed the leader state,
we need to show

(20)

Note that since there is only one leader in the network, is a
column vector. By substituting and from Eqs. (15)

and (16) in Eq. (20), we need to show that

(21)
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By expanding the left hand side of the above, we have

...

(22)

The first line of the above expression can be simplified as

(23)

in which is a vector corresponding to the first
sub-stochastic update at the beginning of the slice, . Also,

has only one non-zero, say , at the th position if follower
updates with the leader at the beginning of the slice, . From

Eq. (5), which is natural in leader-follower settings, [33], it can
be verified that

(24)

Therefore Eq. (22) reduces to the following

(25)

After the first update, ’s, , are non-zeros in
case of sub-stochastic updates, and zeros otherwise. The proce-
dure continues in a similar way for any a sub-stochastic update,
i.e. update with the leader. Let us consider now the other case,
where the update is stochastic. Suppose is the next sub-sto-
chastic update, and we have . Eq. (25) then
reduces to

(26)

Since between and there is no sub-stochastic update,
, and we can rewrite Eq. (26) as

(27)

and the procedure continues as before (note the similarity be-
tween Eq. (23), and the first term on the left hand side of Eq.
(27)). Finally

(28)

which leads to .

IV. SIMULATIONS

In this section, we provide an illustrative example to demon-
strate the concepts described in this letter. In Fig. 2, we show
the dynamic leader-follower algorithm, with mobile
followers. We set the communication radius of all followers
to , and each node can only explore a restricted re-
gion shown as a shaded area where the motion is restricted.
Fig. 2 shows the random trajectories of each node for the first

Fig. 2. Updates and motion in a leader-follower network of size 7; red triangle
indicates the leader; blue circles represent the followers; red circles show the
communication radius of each node.

Fig. 3. Convergence of followers in a dynamic leader-follower network
with leader; blue line indicates the state of the leader.

25 iterations, as well as all possible update scenarios. In this
setup only 2 followers are able to communicate directly to the
leader, while other followers are never in the communication
radius of the leader. The information from the leader can reach
these followers (indirectly) only by propagation through the fol-
lowers. This setup can be extended to arbitrary network configu-
rations and sizes, where the communication and motion models
ensure that the information reaches from the leader to each fol-
lower node. Finally, Fig. 3 illustrates the convergence of fol-
lower states to the state of the leader, chosen at .

V. CONCLUSIONS

In this letter, we study the leader-follower problem in mo-
bile sensor networks, where the mobility of the sensors (fol-
lowers) results in dynamic updating scenarios. Abstracting such
updates as an LTV system with randomly appearing stochastic
or sub-stochastic system matrices, we establish the conditions
under which the corresponding algorithm converges to the state
of a leader. In particular, we show that convergence is guaran-
teed if the motion of the sensors and the leader follow a cer-
tain information propagation rate; and certain weights chosen
by each follower have a uniform lower bound. Furthermore, the
rate at which the information goes from the leader to each fol-
lower does not have to be bounded as long as it is finite and does
not grow faster than a certain exponential growth. Although we
focus on the networks with only one leader, the results can be
easily generalized to any network with multiple leaders, where
the followers converge to a linear-convex combination of the
leader states.
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