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Block Iterative Reweighted Algorithms for
Super-Resolution of Spectrally Sparse Signals

Myung Cho, Kumar Vijay Mishra, Jian-Feng Cai, and Weiyu Xu

Abstract—We propose novel algorithms that enhance the per-
formance of recovering unknown continuous-valued frequencies
from undersampled signals. Our iterative reweighted frequency
recovery algorithms employ the support knowledge gained from
earlier steps of our algorithms as block prior information to en-
hance frequency recovery. Our methods improve the performance
of the atomic norm minimization which is a useful heuristic in
recovering continuous-valued frequency contents. Numerical re-
sults demonstrate that our block iterative reweightedmethods pro-
vide both better recovery performance and faster speed than other
known methods.
Index Terms—Atomic norm, block prior, compressed sensing, it-

erative reweighted, sparse signal.

I. INTRODUCTION

C OMPRESSED sensing promises to perform signal re-
covery using a smaller number of samples than required

by the Nyquist-Shannon sampling theorem. Since compressed
sensing reduces the sampling rate in recovering sparse signals,
it has made great impacts in various signal processing areas [1].
Compressed sensing has also found application to the

problem of line spectral estimation, which aims to estimate
spectral information from few observations. Early-stage com-
pressed sensing frameworks for spectral estimation [2], [3]
assumed that the frequencies of spectrally sparse signals were
located on discretized grid points in the frequency domain.
However, in practice, frequencies can take values in a con-
tinuous domain, giving rise to the so-called basis mismatch
problem [3] when the discretization of the frequency domain is
not fine enough.
The breakthrough theory of super-resolution [4] proposed by

Candès and Fernandez-Granda states that sparse continuous-
valued frequencies can be exactly recovered through total vari-
ation minimization using a set of uniformly spaced time sam-
ples, provided the minimum separation between any two fre-
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quencies is . In order to recover continuous-valued frequen-
cies from few randomly chosen nonuniformly-spaced time sam-
ples, Tang et al. proposed off-the-grid compressed sensing that
employs atomic norm minimization for frequency recovery [5].
Later, it was shown that the minimization over the fine dis-
crete dictionary provides an approximate solution to the atomic
norm minimization [6].
In this letter, we are interested in recovering spectrally sparse

signals with as few random time samples as possible. It is then
natural to ask whether there are efficient frequency recovery
algorithms that can further improve the performance or relax
the frequency separation conditions. We propose new iterative
algorithms to enhance the performance of recovering contin-
uous-valued frequency. In our iterative algorithms, we estimate
the frequency support information from previous iterations, and
use the support information as block prior [7] for reweighted
atomic norm minimization in later iterations.
Iterative reweighted methods have been used to improve

sparse recovery performance in compressed sensing [8]–[13].
However, the sparse signal recovery is considered over a
finite discrete dictionary in [8]–[12]. Besides [13], only our
work considers recovering continuous-valued frequencies by
directly reweighting in the continuous dictionary through a
semi-definite program (SDP). Our work differs from [13] in
that we provide different reweighting schemes that lead to im-
proved signal recovery performance. In [13], the authors set the
reweighting weight for a frequency according
to correlations between frequency atoms (see e.g. Theorem 3
of [13]). In contrast, our method allows to take more
general forms through the dual program of weighted atomic
minimization under general weights [14], thereby lending
more flexibility to incorporating external prior information and
prior information passed on from earlier algorithm iterations.
Numerical experiments show that our iterative algorithms
improve both the recovery performance and the execution time,
compared with [5] and [13].

II. BACKGROUND ON STANDARD AND WEIGHTED ATOMIC
NORM MINIMIZATION ALGORITHMS

In this letter, we denote the set of complex numbers, real num-
bers, positive integers and natural numbers including 0 as , ,

, and respectively. We reserve calligraphic uppercase let-
ters for index sets. When we use an index set as the subscript
of a vector or a matrix , i.e., or , it represents the part
of the vector over index set or the columns of the matrix
over index set respectively.
Let be a spectrally sparse signal expressed as a sum of

complex exponentials as follows:

(II.1)
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where represents a frequency, is its co-
efficient, and is its phase,

is the set of time indices. Here, is a
frequency-atom, with the -th element given by

. In particular, when phase is 0, we denote the fre-
quency-atom simply as .We assume that the signal in (II.1)
is observed over the time index set , ,
where observations are chosen randomly. Our goal is to re-
cover all the frequencies with the smallest possible number of
observations. Estimating frequencies is not trivial because they
are in continuous domain, and their phases and magnitudes are
also unknown.
The atomic norm of a signal and its dual norm [5, Eq. (II.7)]

are defined respectively as follows:

(II.2)

(II.3)

where represents the real part of the inner product .
Here, the superscript is used for the conjugate transpose. In
[5], the authors proposed the following atomic norm minimiza-
tion to recover a spectrally sparse signal using randomly
chosen time samples :

subject to (II.4)

The dual problem of (II.4) is

subject to (II.5)

The constraint in (II.5) can be changed to
using (II.3). We label as

the dual polynomial . Since the Slater condition is satis-
fied in (II.4), there is no duality gap between (II.4) and (II.5)
[15]. Moreover, the estimated spectral content comprises the
frequencies at which the absolute value of the dual polynomial,
which is derived from (obtained as a solution of (II.5)),
attains the maximum modulus of unity. We refer the reader to
[5] for details. The off-the-grid compressed sensing approach
in [5] demonstrated that with randomly chosen observation
data, one can correctly obtain frequency information by solving
the atomic norm minimization. However, the atomic norm
minimization requires a certain minimum separation between
frequencies for successful recovery.
In [7], we considered frequency recovery with external prior

information, and showed that if the frequencies are known to
lie in frequency subbands, we can obtain better recovery per-
formance by using frequency block prior information. The SDP
formulation adopted inside each iteration of our new algorithms
follows that detailed in [7]. We summarize that SDP formula-
tion in the following paragraph.
Suppose the frequency of the signal lies within the fre-

quency block . Then, given this block prior informa-

tion , the atomic norm with block priors and its dual are stated
respectively as follows [7, Eq. (II.9)]:

(II.6)
(II.7)

We formulate the atomic norm minimization with block priors
[7, Eq. (III.1)] as

subject to (II.8)

The dual problem of (II.8) is

subject to (II.9)
Here, is a union of disjoint frequency blocks within
which all the true frequencies are located, i.e.,

, where is the number of disjoint block
blocks, and are the lowest and highest frequencies
of the -th frequency block. Using the properties of positive
trigonometric polynomials [16], [17] and (II.7), this dual
problem can be formulated as an SDP [7, Eq. (III.16)]:

subject to

(II.10)

where if , and otherwise,
and are Gram ma-

trices. The trace parameterization term
for the frequency block is set to

, where
is the Toeplitz matrix that has ones on the -th diagonal and
zeros elsewhere, , , where

, and . This SDP approach
[7] was expanded for more general cases in [14].
In practice, one may not always have direct access to prior

information. This leads to the question if we can improve the
frequency recovery performance without any external prior in-
formation. We describe new algorithms to address this issue in
the following section.

III. BLOCK ITERATIVE (RE)WEIGHTED ATOMIC
NORM MINIMIZATION ALGORITHMS

We propose three iterative algorithms to enhance frequency
recovery performance in the absence of external prior informa-
tion. In our algorithms, we use estimated frequency support in-
formation from previous iterations as block prior for subsequent
iterations.

A. Block iterative weighted Atomic Norm Minimization
We first introduce a conceptual algorithm named Block iter-

ative weighted Atomic Norm Minimization (BANM). BANM
solves SDP of (II.10) repeatedly, using block priors obtained
from the previous iteration. In each iteration, BANM estimates
the frequency locations, and then, around the estimated fre-
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quencies, BANM forms blocks which very likely contain the
true frequencies. With the block priors so obtained, BANM en-
hances frequency recovery via solving (II.10) in the next itera-
tion, using the new block information.
BANM initially sets frequency block , and then

solves (II.10). Suppose the solution of (II.10) gives estimated
frequencies , , where the superscript is used
to represent the iteration number. BANM chooses the frequen-
cies with the largest coefficients in amplitude
among them, where is a certain integer number. BANM then
forms a union frequency block with frequency subbands
around the estimated frequencies , , as

(III.1)

for some small real number , that determines the
size of the subband. BANM uses the union frequency block
as block prior and solves (II.10) again with updated parameters.

B. Block iterative reweighted and Atomic Norm
Minimization Mixture
BANM requires solving SDP in each iteration to estimate the

location of frequencies, but solving SDP repeatedly causes long
execution time. Thus, we propose using low-complexity algo-
rithm to obtain prior information on frequency locations. We
then use the aforementioned SDP (II.10) only in the last iter-
ation for accurately determining the frequency locations. This
concept is the key to design of our algorithm - Block itera-
tive reweighted and Atomic Norm Minimization Mixture (or
simply, BANM-Mix) algorithm that can achieve super-resolu-
tion of frequencies with low complexity (Algorithm 1).

Algorithm 1: Block iterative reweighted and Atomic Norm
Minimization Mixture (BANM-Mix) Algorithm

Input: , , MaxItr, , ,
Output: frequency , coefficient
Initialize: , , , ,

for to do
solution of (III.2),
frequency block via (III.3) for

weight via (III.4) for
if then

frequency block via (III.1), where satisfying

such that in after solving (II.10)
satisfying Eq. (II.1) with given and

break
end

index set via (III.5)
end

BANM-Mix first discretizes the continuous frequency do-
main [0,1] in uniform intervals of size . We denote the index
set for these intervals as , where . The
index set corresponds to discrete frequency grid points

, . We have the discrete Fourier matrix

Fig. 1. An illustration of the adaptive gridding. The estimated frequency
in the first iteration is depicted by a red pole. The index set and have solid
and dotted grid points respectively. The block that contains the red pole in the
middle is the index-wise frequency block , where .

over discrete frequency grid points whose element
in the -th column and -th row is .
Then, BANM-Mix iteratively solves reweighted min-

imization over this discretized frequency dictionary to effi-
ciently estimate frequency locations. Different from iterative
reweighted minimization algorithms designed for incoherent
discrete dictionaries [8]–[12], our iterative reweighted mini-
mization algorithm employs novel adaptive gridding and block
reweighting strategies to extract frequency support information
from our highly correlated discretized dictionary.
BANM-Mix initializes coefficients , weights
for , and an index set

. Let
be a diagonal matrix with weights ,
be the partial discrete Fourier matrix.

In the -th iteration, BANM-Mix solves the following
weighted minimization problem over the index set ,
rather than the larger index set :

subject to
(III.2)

We then define a vector having and .
BANM-Mix then calculates the weight , .

We define the index-wise frequency block as

(III.3)
for some positive integer , which determines the block width.
BANM-Mix computes the weight by considering the fre-
quency coefficients around in the discretized domain as

(III.4)

where is a small positive constant to prevent from
going to infinity. We refer to our procedure in (III.4) as block
reweighting. Since the discretized dictionary under considera-
tion has highly correlated columns, block reweighting can accu-
rately reflect the likelihood of a true frequency existing around
. Our numerical experiments showed that earlier reweighting

strategies [8]–[11], which update , could not cor-
rectly reflect the likelihood of a true frequency being at index
and resulted in worse frequency recovery performance. This is
because the solution to (III.2) will disperse the amplitude of a
true frequency into the neighboring indices in highly correlated
dictionary columns.
After updating for , BANM-Mix updates

the index set through adaptive gridding. In adap-
tive gridding, BANM-Mix first finds indices , ,
with , where

and are the minimum and max-
imum values of the elements of respectively. We define
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as . Then BANM-Mix
updates as

(III.5)

Namely, if , will include finer grid
points (with separation ) around frequency . Recall
that, at the beginning, has only grid points with separation

. The reason is that when is small, very likely a true
frequency exists around frequency . By applying finer
gridding around frequency , one can estimate the fre-
quency location more accurately in the next iteration. We call
this method of applying different resolutions in the discretized
dictionary as adaptive gridding (see Fig. 1).
The algorithm continues solving (III.2) in each iteration until

either a specified maximum number of iterations (MaxItr) is
exhausted or the solution of (III.2) converges i.e.,

, for some error tolerance . BANM-Mix
then chooses the block prior set by a union of the frequency
blocks around frequency satisfying . With
this frequency block information, we use SDP (II.10) to super-
resolve frequencies in the last iteration.

C. Block iterative reweighted Minimization
The complexity of BANM-Mix can still be high since we

have to solve an SDP in the last iteration. To further reduce
its complexity, we propose the Block iterative reweighted

Minimization (BL1M) algorithm which is the same as
BANM-Mix except that BL1M does not solve SDP in the last
iteration. Instead, BL1M uses postprocessing to estimate the
final frequencies from the results of iterative reweighted
minimizations. In the last iteration, BL1M finds the frequency
blocks that satisfy . If two frequency
blocks overlap, BL1M merges them into one. BL1M
assumes that one frequency block contains only one true
frequency. Suppose that one frequency block (after possible
merging) has grid frequencies whose corre-
sponding coefficients are . Then BL1M estimates the
frequency in that block as .

IV. NUMERICAL EXPERIMENTS

We compare our algorithms with the standard Atomic Norm
Minimization (ANM) [5], and the Reweighted Atomic norm
Minimization (RAM) [13]. We use CVX [18] to solve convex
programs.1 In all experiments, the phases and frequencies are
sampled uniformly at random in and [0,1] respectively.2
We evaluate the recovery performance for the signal dimen-

sion , number of observation is varied from 8 to 25,
block width , , and . The
maximum number of iterations (MaxItr) is set to 20 for both
BANM-Mix and RAM.3 Fig. 2 and 3 show the probability of

1We conducted our numerical experiments on HP Z220 CMT with Intel Core
i7-3770 dual core CPU@3.4 GHz clock speed and 16 GB DDR3 RAM, using
Matlab (R2013b) on Windows 7 OS.

2The amplitudes , are drawn randomly from the distribution
where represents the chi-squared distribution with 1 degree of

freedom.
3A MaxItr value of 20 was sufficient to guarantee an empirical convergence

of our iterative procedures in most of our experiments.

Fig. 2. The probability of successful frequency recovery ( ).

Fig. 3. The probability of frequency recovery for .

Fig. 4. The execution time as a function of signal dimension .

successful recovery of the entire spectral content over 50 trials
for each parameter setup. We consider a recovery successful if

. Fig. 3 clearly shows that our algorithm out-
performs both ANM and RAM for and .
We assess the computational complexity of algorithms in

terms of the average execution time for signal recovery from
10 trials. Here, we present results when is from 120 to 470,

, , , , , .
Fig. 4 shows that the speed of BL1M is faster than that of ANM
and RAM. This is because the latter is based on an SDP while
the former uses only minimization.

V. CONCLUSION
The BANM-Mix and BL1M show better recovery than

other known iterative methods [5], [13]. In particular, BL1M
has shorter execution times than these other methods. Our
simulations empirically exhibit convergence of our iterative
procedures. It would be interesting to perform more compre-
hensive theoretical analysis of convergence in the future.
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