
IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 12, DECEMBER 2015 2289

Alpha-Stable Matrix Factorization
Umut Şimşekli, Student Member, IEEE, Antoine Liutkus, Member, IEEE, and Ali Taylan Cemgil, Member, IEEE

Abstract—Matrix factorization (MF) models have been widely
used in data analysis. Even though they have been shown to be
useful in many applications, classical MF models often fall short
when the observed data are impulsive and contain outliers. In this
study, we present MF, a MF model with -stable observations.
Stable distributions are a family of heavy-tailed distributions
that is particularly suited for such impulsive data. We develop a
Markov Chain Monte Carlo method, namely a Gibbs sampler, for
making inference in the model. We evaluate our model on both
synthetic and real audio applications. Our experiments on speech
enhancement show that MF yields superior performance to a
popular audio processing model in terms of objective measures.
Furthermore, MF provides a theoretically sound justification
for recent empirical results obtained in audio processing.
Index Terms—Markov chain monte carlo, matrix factorization,

stable distributions.

I. INTRODUCTION

M ATRIX FACTORIZATION (MF) models have been a
central topic in various research fields such as audio pro-

cessing, finance, bioinformatics, and computer vision [1], [2].
In MF, the aim is to decompose a matrix as , where
, , and are of size , , and , re-

spectively. Here, the approximation is in the sense of reducing a
suitable cost function, for example

, where is a divergence function that measures
the approximation error and is a regularization term that
enforces prior knowledge on the factors. This topic has a long
and still active history in linear algebra, since classical problems
such as truncated singular value decompositions and related al-
gorithms fall into this category [3], [4], with the principal com-
ponents analysis being an ubiquitous example.
An alternative approach for developing approximate MF

models consists of using a probabilistic framework that has the
following hierarchical generative model:

(1)
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where, denotes the th row of and denotes the th
column of . In this context, the cost function is se-
lected as and minimizing it corresponds to
finding the mode of the posterior. Depending on the choice of
the prior distributions , and the observation model

, one can obtain a plethora of MF models with dras-
tically different statistical properties. Typical choices for the ob-
servation models can be listed as the Gaussian distribution [5],
[6], [7], Poisson distribution [8], [9], and compound Poisson
distribution [10]. Even though MF with the above observation
models have shown to be useful in various applications, these
models may fall short when the observations are very impulsive
and contain outliers, which is a common case in many domains
such as audio processing and finance.
A popular approach for modeling impulsive data is to use

heavy-tailed observation models, such as the t distribution [11],
[12]. Instead of sticking to a particular observation model,
in this study, we develop a novel MF model, called as MF,
that makes use of a family of heavy-tailed distributions as the
observation model, so called the -stable distributions. As
we will describe in Section II, stable distributions have a rich
structure and cover a broad range of noise distributions, where
several important distributions appear as special cases. Besides,
as opposed to many popular heavy-tailed observation models,
-stable distributions have rigorous statistical interpretations

when they are used for modeling audio signals, as we will
describe in Section V-B. Stable distributions have been used
in signal processing, especially in robust time-series modeling
[13], [14], [15], [16], [17], [18]. However, to the best of our
knowledge, this is the first study to develop a MF framework
with -stable observations.
After a brief introduction to -stable distributions, we de-

scribe MF in detail. Then, we develop a Gibbs sampler for
sampling from the posterior distributions of the latent variables.
We evaluate our model on both synthetic and real audio data,
where MF outperforms a popular MF model on a speech en-
hancement application in terms of objective measures.

II. -STABLE DISTRIBUTIONS

Stable distributions are heavy-tailed distributions and appear
as the limiting distributions in the generalized central limit
theorem [19]. They are characterized by four parameters:

, where (1) is called the characteristic
exponent and determines the tail thickness of the distribu-
tion. As this parameter gets smaller, the distribution will be
heavier-tailed, and therefore the observations will be more
impulsive. (2) is called the skewness parameter and
determines whether the distribution is left- or right-skewed.
The distribution is called symmetric -stable ( ) if .
(3) is called the scale or the dispersion parameter.
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It measures the spread of the random variable around its mode.
(4) is the location parameter. The probability
density function of a stable distribution cannot be written in
closed-form except for certain special cases, which are the
Gaussian distribution ( , ), the Cauchy distribution
( , ), and the Lévy distribution ( , ).
However, the characteristic function of the distribution can be
written in closed form (see [19]).

-stable distributions are readily extended to the case of vec-
tors, and in particular to complex random variables . In
this study, we will make use of the complex isotropic -stable
distribution, which is shortly noted as , that reduces
to in the real case [19], [20].

III. THE MODEL

In this section, we describe the -Stable Matrix Factorization
( MF) model in detail. MF models all the entries of an
complex matrix as independent and distributed with
dispersion parameter decomposed as follows:

An equivalent formulation using augmentation leads to the fol-
lowing composite model [21]:

(2)

where are called the latent sources. To be described
in more detail in the next section, we will develop a Gibbs sam-
pler for making inference in MF, where we will need to sample
from the conditional distributions of the latent variables. There-
fore, we express MF as conditionally Gaussian by making use
of the product property of the stable distributions [15], [16], as
follows:

(3)

where denotes the complex isotropic Gaussian distribution
and is the impulse variable. This formulation will
allow us to analytically derive the conditional distributions of ,

, and . Besides, nowwe can clearly see the impulsive struc-
ture of the model, where the variances of the Gaussian observa-
tions aremodulated by infinite variance stable random variables,
whose impulsiveness is controlled by .
In order to preserve conjugacy, we assume generalized

gamma priors on the latent factors:

(4)

where the probability density function of the generalized
gamma distribution is defined as follows:

(5)

Fig. 1. Graphical models of IS-NMF and MF. The nodes represent the
random variables, the arrows determine the conditional independence struc-
ture, and the shaded the nodes represent the observed variables. (a) IS-NMF
(b) MF.

Finally, we assume uniform prior on : . The
graphical representation of MF is given in Fig. 1.

IV. INFERENCE
In practice, depending on the application, we are interested

in the posterior distributions of the latent factors
or the latent sources . In this study, we develop
a Markov Chain Monte Carlo (MCMC) method for sam-
pling from the posterior distributions of the latent variables

.
Monte Carlo methods are numerical techniques to approxi-

mately compute the expectations of the form:

(6)

where are the samples drawn from , that is the
posterior distribution in our case. How-
ever, sampling directly from is intractable. MCMC
methods generate samples from the target distribution
by forming a Markov chain through a transition kernel;

, whose stationary distribution is ,
so that . In order to design such
kernels, various strategies can be applied [22]. In this study,
we develop a Gibbs sampler, that implicitly forms a transition
kernel by sampling from the full conditional distributions of
the latent variables.
The full conditional distributions of and are given as

follows:

where

To sample the latent sources, it is possible to develop a ‘block’
Gibbs sampler, where we would need to sample
jointly at each iteration [21]. However, this approach requires
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sampling from a degenerate multivariate Gaussian and could
yield computational inefficiencies in certain cases. Therefore,
we utilize a partially collapsedGibbs sampler [23] for sampling
where we draw samples from the marginal conditional distri-

bution of instead of the full conditional distribution, given
as follows:

where

This approach provides computational advantages over block
Gibbs sampling, since it needs to generate only univariate
random variables.
Unfortunately, the full conditional distributions of and

cannot be derived analytically, therefore we resort to Metropolis
Hastings (MH) algorithm for sampling from their full condi-
tional distributions. For , we choose a symmetric proposal dis-
tribution , that would explore the state
space of by a random walk. The acceptance probability for
then becomes:

Evaluating this probability requires stable densities to be eval-
uated twice at each epoch. Therefore, we have developed a fast
numerical method for evaluating stable densities by making use
of their power series representation [24], [16]. The details of this
method is given in the online supplementary document [25].
We follow a similar procedure for , where we choose

the prior distribution of as its proposal distribution:
. Accordingly, the acceptance probability

simplifies and we obtain the following expression:

V. EXPERIMENTS

In this section, we will evaluate our method on both synthetic
and audio data. Our implementations are mostly inMatlab, apart
from -stable density evaluation and random number genera-
tion algorithms, which are implemented in C.

A. Experiments on Synthetic Data
We first conduct experiments on synthetic data, where the

aim is to validate our inference procedure. In these experiments,
given a fixed , we generate the latent variables , , , ,
and the observed complex matrix by using the generative
model given in (3). Then, given the observed matrix , we run
our inference algorithm after initializing all the latent variables
randomly. In our experiments, we set , ,

, and and we repeat this experiment for several
values of .
Due to space limitations, we only report the results of the esti-

mation of , since it is the most prominent variable, determining

Fig. 2. Results of the synthetic data experiments.

the structure of the distribution. In Fig. 2, we visualize the sam-
ples that are generated by our algorithm for different true
values. The results show that, even though the initial samples,

, might be far from the true value of the variable, our infer-
ence algorithm can successfully locate the mode near the true
and starts sampling around that mode, even when the obser-

vations are coming from an extremely heavy-tailed distribution
( ).

B. Experiments on Audio

In our next set of experiments, we evaluate MF on real
audio data. We compare MF with Itakura-Saito NMF [5]; a
MF model that is often used in audio processing, having the
following underlying probabilistic model:

(7)

where denotes the inverse gamma distribution. Here, is
taken as a time-frequency representation of the audio signal,
with the indices and denoting the frequencies and the time-
frames, respectively. IS-NMF appears as a special case of MF:
if we set , the generalized gamma distribution becomes
the inverse gamma distribution, becomes deterministic, and
therefore MF reduces to IS-NMF (see Fig. 1).
IS-NMF is considered as an important model for audio mod-

eling since there is a rigorous statistical interpretation of the
model from the waveform level to the power spectra level: if we
assume that all the time-frames are independent and wide-sense
stationary (WSS), we can show that all the entries of the short-
time Fourier transform (STFT) of the signal are indeed indepen-
dent and distributed with a complex centered isotropic Gaussian
distribution [26] whose variances correspond to the power spec-
tral density (PSD) of the signal. In this sense, IS-NMF models
the PSD of a WSS signal by using a low rank approximation.
However, the assumption of the time-frames being WSS can

be restrictive for various types of audio signals that have impul-
sive nature, such as speech. The interest of MF in this context
is that it generalizes IS-NMF by relaxing the WSS assumption
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Fig. 3. Histograms of for noise (top) and speech (bottom).

and assumes that all the time-frames are independent and sta-
tionary harmonizable -stable processes. With such an assump-
tion, we can show that the STFT coefficients are still indepen-
dent but distributed with a distribution, generalizing the
WSS case [20].
We conduct our experiments on NOIZEUS noisy speech

corpus [27]. This dataset contains 30 sentences that are ut-
tered by 3 female and 3 male speakers. These sentences are
corrupted by using 8 different real noise signals (train, babble,
car, exhibition hall, restaurant, street, airport, train-station) at
4 different signal-to-noise ratio (SNR) levels. We analyze the
signals by using the STFT with a Hamming window of length
512 samples and 75% overlap.
Firstly, we run MF on each audio signal (30 clean speech

and 8 noise signals). For each signal, we generate 2000 samples
where we discard the first 100 of them as the burn-in period. We
repeat this procedure three times with different initializations
and combine all the samples in two groups: clean speech and
noise. We use for each noise signal and for
each speech signal, and we set .
Fig. 3 shows the histograms of for speech and noise.We can

observe that, for the noise signals, the posterior distribution of
is concentrated near , i.e. almost Gaussian, whereas

we obtain two modes at and for the clean
speech. This is expected because it has long been observed that
informative signals such as speech tend to exhibit heavier tails
than noises occurring in practice, justifying the use of -stable
models in audio [15]. More interestingly, this outcome provides
a sound foundation to the recent empirical results obtained in
[20], where the authors demonstrated that is the best
performing exponent of the generalized Wiener filter, that im-
plicitly assumes that the audio signals are stable distributed.
Secondly, we compare MF with IS-NMF on a speech en-

hancement application, where the aim is to recover the clean
speech signal, given a noisy speech signal. In this experiment,
we follow a semi-supervised approach and use a slightly dif-
ferent model for the noisy mixtures, given as follows:

, where

Here, ‘sp’ denotes the speech and ‘no’ denotes the noise. For
IS-NMF we set . For MF, we set
and , as suggested by the results above.

Fig. 4. Evaluation results of IS-NMF and MF on speech enhancement. Note
that, IS-NMF coincides with MF when .

For each model, we first train the dictionary matrix on
the first 20 clean speech signals (2 female and 2 male speakers)
by using the following approach. We concatenate the STFTs of
the speech signals to obtain . Then, we run the Gibbs sampler
for 3000 epochs where we set to the Monte Carlo average
(see (6)) by using the last 200 samples. The number of columns
of is chosen as .
At testing, for each input SNR, we apply both models on

80 different noisy mixtures, where we fix and sample
the rest of the latent variables, including . Note that, the
noisy speech signals are obtained by combining 8 different
noise signals with 10 clean speech signals that are not used
during training. For each mixture, we set and generate
2500 samples where we use the last 50 samples to estimate the
posterior expectations of and .
For evaluating the quality of the estimates we use the signal-

to-distortion ratio (SDR), signal-to-interference ratio (SIR), and
signal-to-artifact ratio (SAR) that are computed with
version 3.0 [28]. Fig. 4 shows the results. We can observe that,
both models perform poorly when the input SNR is low. How-
ever, as we increase the input SNR, the structure of the speech
becomes more prominent, and we see that MF becomes more
advantageous in terms of all the objective measures. We obtain
4 dB SDR improvement when the input SNR is 15 dB. Besides,
MF results in less interference and less artifacts as measured

by SIR and SAR. These differences are statistically significant
with 5% significance level.

VI. CONCLUSION
In this study, we presented MF, a matrix factorization

model with -stable observations. Due to the heavy-tailed
nature of the stable distributions, MF is particularly suited for
impulsive or corrupted data that appear in several domains such
as audio processing. We exploited the conditionally Gaussian
nature of the stable distribution to develop a Gibbs sampler
for sampling from the posterior distributions of the latent
variables. We evaluated our model on both synthetic data and
real audio signals, where MF outperformed semi-supervised
Itakura Saito-NMF in terms of objective measures on a speech
enhancement application.
As a final remark, we note that there have been several ex-

tensions on IS-NMF that aim to incorporate the temporal and
spatial structure of speech signals into the model [29], [30]. As
a possible future direction, we believe that the performance of
MF can be further improved by extending the model in similar

aspects.
This paper previously published in IEEE Signal Processing Letters
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