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Sequential Bayesian Algorithms for Identification
and Blind Equalization of Unit-Norm Channels
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Abstract—In many estimation problems of interest, the un-
known parameters reside on spherical manifolds. Asmost common
filtering algorithms assume that parameters have Gaussian prior
distributions, their application to such problems leads to subop-
timal performance. In this letter, we propose a model in which
the unknown unit-norm parameter vectors have Fisher–Bingham
(F-B) prior distributions. We show that if the observations relate
to the parameters via Gaussian likelihoods, the F-B priors form
a conjugate model that yields closed-form, recursive estimators
that naturally take into account the restrictions on the unknowns.
We apply this model to a communication setup with multiple
gain-controlled FIR frequency-selective channels, deriving a novel
maximum a posteriori (MAP) channel parameter estimator and
a blind equalizer based on Rao–Blackwellized particle filters. As
we verify via Monte Carlo numerical simulations, the F-B model
leads to superior performance compared to previous algorithms
that adopt mismatched Gaussian prior models.

Index Terms—Bayes methods, blind equalizers, particle filters,
system identification.

I. INTRODUCTION

W IRELESS digital communication systems require some
form of automatic gain control (AGC) to cope with

variable channel gain [1]. In a (quasi)stationary environment
in which the mean transmitted signal power and the mean
noise power are constant, and the propagation channel is (al-
most) static, AGC asymptotically sets the equivalent baseband
channel gain [2, p. 336]. Under the usual assumption of an FIR
channel model [3], [4], [5], [6], [7], [8], this can be verified to
constrain the channel parameter vector norm (without loss of
generality, to unity).
Many previous blind channel equalization or identification

algorithms rely on AGC to compensate for otherwise uniden-
tifiable channel gains [3], [4], [5], [9, p.73], or as an auxiliary
mechanism to avoid divergence [10]. However, in a Bayesian
setup in which the channel parameters are unknown and are
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to be estimated (e.g., channel identification) or integrated out
as nuisance parameters [11] (e.g., blind equalization), norm
constraints preclude usual Gaussianity assumptions on which
previous techniques [6]–[8], [12]–[23] are based. To remediate
this, we introduce in this letter new Bayesian recursive methods
for channel identification and blind equalization based on the
Fisher-Bingham (F-B) distribution [24, p. 174].
The F-B distribution arises when a multivariate normal

random vector is conditioned to have unit length [25]. Similar
distributions defined on (hyper)spheres (e.g., Von Mises-Fisher,
Bingham, Kent [24]) have found use in filtering problems. In
[26], an approximate algorithm to track Von Mises-Fisher-dis-
tributed unit-norm rotation parameters is introduced. A mixture
Bingham model is employed in [27] to fit the posterior distri-
bution of unit-norm quaternions in a pose estimation problem.
This work innovates by introducing a conjugate

Gaussian-F-B model. Namely, we show that if the unknown
unit-norm channel parameter vector has F-B prior distribution
and the likelihood of the observables is Gaussian, then the
channel parameter vector posterior distribution is also a
F-B distribution whose parameters can be exactly evaluated
via recursive expressions. This allows us to derive a novel
optimal MAP (maximum a posteriori) closed-form channel
parameter estimator and a new blind equalizer based on
Rao-Blackwellized particle filters [11] that analytically
integrate out the unit-norm parameter vector.
The remainder of the text is organized as follows: in

Section II we describe the examined estimation problems.
In Section III, in turn, we prove the aforementioned conju-
gacy properties and derive the F-B MAP channel parameter
estimator. Afterward, in Section IV, we derive the densities
needed to operate a Rao-Blackwellized particle-filter-based
blind equalizer. A computational validation of the methods
is presented in Section V and our final comments are left to
Section VI.
A) Notation: We employ the notation ,

where denotes the number of receivers and, likewise,
. We (non-exclusively) use capitals to denote se-

quences, i.e., , , and
. The symbol denotes a (possibly

multivariate) Gaussian density with mean and (co)variance
matrix .

II. PROBLEM FORMULATION

We consider a multiple-output FIR frequency-selective
channel setup in which , , the signal re-
ceived by the th receiver at the time instant , is modeled as

(1)
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where collects the last transmitted
symbols, is the channel order (without loss of generality, con-
sidered equal for all receivers), is a zero-mean indepen-
dent, identically distributed (i.i.d.) Gaussian process of known
variance , and collects the channel impulse re-
sponse terms between the transmitter and the th receiver. The
random quantities , , and , , are
presumed to be mutually independent a priori.
Due to the aforementioned norm constraint, the channel pa-

rameters vector is assumed to have an variate F-B prior
distribution

(2)

where and the symmetrical matrix are
given hyperparameters, denotes the indicator function, and

is the normalization constant, i.e.,

(3)

where denotes the unit
sphere and the volume element [28] on .
Although there is no known analytical expression for

, numerical estimates can be computed in
via the method described in [25, Section II-B], which employs
so-called saddlepoint approximations. Observe that if
and , reduces to a uniform dis-
tribution on the unit sphere. Note also that, contrary to the
Gaussian counterpart, is not restricted to be positive
definite.

III. CHANNEL IDENTIFICATION
In this section, we derive a recursive method to evaluate the

locally trained1 2 MAP (maximum a posteriori) estimate

(4)

To this aim, we first demonstrate the following proposition.
Proposition: Under the assumptions (1) and (2), the posterior

distribution

(5)

where the parameters and can be recursively deter-
mined via (10)–(11).

Proof: The proof is inductive. First, observe that

(6)

Exploiting Markovian properties induced by (1), it follows that
[19]

(7)

1The algorithm derived in Section III could in principle deal with arbitrary
signals . Proper operation of AGC, however, may impose restrictions.

2Due to independence assumptions made in Section II, the use of remote ob-
servations , , does not improve trained estimates of .

where is a discrete probability mass function
(p.m.f.) assumed known to the receiver, and

. We assume now the inductive hypothesis
that

(8)

Substituting (8) into (7), we obtain that

(9)

where

(10)
(11)

Note that (9) depends on through a F-B density (Eq. (2))
without the appropriate normalization term. Therefore, inte-
grating out of (9) results that

(12)

Dividing (9) by (12), it follows that

(13)
which is equivalent to (5). This proves the result by the finite
induction principle as, for , (8) reduces to (2).
The MAP solution sought in (4) can be recast as the con-

strained optimization problem

subject to (14)

as the normalization constant does not depend on
. The Lagrange function corresponding to (14) is given by

(15)

Taking the gradient of (15) with respect to , we obtain that

(16)

Dividing (16) by the exponential term and equating the result to
zero, it follows that

(17)

where .
Equating the derivative of (15) with respect to to zero is

equivalent to enforcing the constraint . Noting
that as is by construction symmetrical, we can plug its
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Fig. 1. Channel Identification Algorithm.

eigenvalue decomposition into (17) and
rewrite the constraint3 as

(18)

Equation (18) is equivalent to

(19)

which can be rewritten as a degree polynomial equation and
numerically solved for , where denotes the th element
of a vector or of a matrix diagonal.
The complete algorithm to determine is summarized in

Fig. 1.
Remark: Note that (17) has the functional form of a regu-

larized least-squares solution [29]. Moreover, if is pro-
portional to the identity, which happens asymptotically if is
i.i.d., it can be shown that is a normalized version of the
least-squares [29] estimate .
Computational Complexity. The algorithm of Fig. 1 requires

an exhaustive search among the set of real solutions of (19) for
the value that, substituted into (17), maximizes the un-
normalized posterior in (14). The complexity of the algorithm
is dominated by the evaluation of (17), which demands
but must be repeated times (at most). The remaining oper-
ations, namely, the evaluation of the eigenvalue decomposition
of and the solution of the polynomial equation implicit in
(19) also demand , but need to be executed only once.
The overall complexity of the algorithm is, therefore, .

IV. MULTICHANNEL BLIND EQUALIZATION
Under the additional assumption that the transmitted sym-

bols are binary and obtained by differentially
encoding the i.i.d. bit stream , we aim at obtaining
the jointMAP estimate , that employs
the observations available at all receiving nodes via a particle fil-
tering method. Observing that uniquely determines , we
employ a particle filter [11] to approximate the posterior proba-
bility mass function

(20)

3Observe that the constraint can be enforced without explicitly
evaluating , but only .

Fig. 2. Multichannel Blind Equalization Algorithm.

where denotes the number of particles , random samples
of the state trajectory, and the corresponding normalized
weights.
We adopt the so-called prior importance function [30], by

which the particles are extended as . The
corresponding weight update expression is the given by

(21)

where we remind the reader that the uppercase variables contain
the complete time series from .
The previous assumptions of a priori independence of the

channel parameters and noise samples at each receiver imply
that [31]

(22)

Likewise, conditional independence relations induced by (1) re-
sult [31] that

(23)

Note that the integrand in (23) is very similar to (7) except for
the term , which is absent from (23). Therefore (12)
implies that

(24)

where and are defined as in (10)–(11) replacing
with .
The resulting blind equalization algorithm is summarized in

Fig. 2. A distributed [32], [33], [34], [35], [36] version can be
implemented as described in [31, Section III-A].
Computational Complexity. To run the particle filtering algo-

rithm of Section IV, (21) must be evaluated times. In each of
This paper previously published in IEEE Signal Processing Letters
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Fig. 3. Average mean square error (m.s.e.) in the identification of the parameter
as a function of the number of observed samples ( ) and the signal-to-noise

ratio (SNR) estimated in 5,000 Monte Carlo runs.

those evaluations, (24) must be computed times (one time for
each receiving channel). The computational complexity of (24)
is dominated by the evaluation of the normalization constant4

, which is . The overall complexity of the
algorithm is, therefore, .

V. EXPERIMENTAL RESULTS

A. Channel Identification
To evaluate the performance of the trained MAP identifica-

tion algorithm (Section III), we ran 5,000 independent exper-
iments, in each of which we generated successive samples

as defined by (1), using . We drew by sampling
independently in each realization from and normalizing
the result, so that is uniformly distributed on the unit sphere
[37]. We employed a matched prior density for by setting the
hyperparameters and to zero, which corresponds to a
non-informative [38] uniform prior.
Fig. 3 shows the estimated mean square error (m.s.e.)

resulting from the algorithm in Fig. 1 (F-B)
using and 1,000 samples. For comparison, we show
in the same plot the performance of the least squares (trained)
estimator (LS), which, for the considered setup, is equivalent to
a MAP estimator that adopts a mismatched Gaussian prior for

[29]. As one may verify, the algorithm employing F-B prior
led to a lower m.s.e. (about 66% of the LS estimator m.s.e.) for
all the considered signal-to-noise ratio (SNR) levels; this per-
formance advantage is also maintained when the observation
window is enlarged ( ).

B. Blind Equalization
We assessed the steady-state performance of the proposed

blind equalization algorithm (Section IV) via Monte Carlo
simulations consisting of 5,000 independent runs, in each of
which the mean bit error rate (BER) was estimated as a function
of the SNR, assumed for simplicity equal on all receivers. In
each realization, an i.i.d. sequence of 250 differentially en-
coded binary symbols was transmitted, being the first 150 bits
discarded to allow for convergence. The simulated system
has receivers. The parameters , , were
sampled independently for each as described in Section V-A.

4Observe that in (24) is evaluated at time and,
therefore, does not need to be re-evaluated at time .

Fig. 4. Mean bit error rate (BER) estimated in 5,000 Monte Carlo runs as a
function of the signal-to-noise ratio (SNR). The dashed lines surrounding the
solid ones display the respective 95% confidence intervals.

As in Section V-A, the hyperparameters and were
set to zero. The particle filter employs particles and
performs systematic resampling [39] at each time step.
Fig. 4 displays the mean performance of the blind algorithm

of Section IV (F-B) ( ) and that of the equivalent blind method
that employs mismatched Gaussian priors [31, Section III-A]
( ). The 95% confidence intervals for both means are displayed
as dashed lines. For comparison, Fig. 4 also depicts the per-
formance of zero-delay equalizers based on the MAP criterion
(grid filter [40]) using exact channel parameters ( ) and param-
eters estimated via the Subspace technique [4] ( ). Fig. 4 also
shows the mean performance of the zero-delay 15-tap linear
least-squares equalizer [29] (LS - ), and that of the NCMA5

[29] ( ) after iterations, using 7 taps and .
As one may note, the performance of the new algorithm (F-B)

is similar to that of the optimal MAP equalizer and that of the
Gaussian particle-filter-based method for low and medium SNR
levels. For high SNR levels, on the other hand, the performance
of the new method exceeds that of [31] by a statistically signif-
icant margin.

VI. CONCLUSION
In this work we described new algorithms for channel iden-

tification and blind equalization using a Fisher-Bingham prior
model for the unknown parameters. We introduced a conjugate
model that led to closed-form expressions for the parameters
of some required posterior densities, dropping with the need
for further approximations as those performed by previous
works that employed other sphere-constrained distributions
(Von Mises-Fisher [26], Bingham [27]).
As we assessed via Monte Carlo simulations, the new

channel identification and blind equalization algorithms out-
performed conventional algorithms that adopt mismatched
Gaussian priors, at the cost of increased computational com-
plexity. A limitation of our simulations is that they generate
synthetic signals with statistics exactly matched to the proposed
Fisher-Bingham prior model. As future work, we plan to test
the proposed algorithms with real data taking into account AGC
power oscillation, time-varying channels and synchronization
issues.

5CMA-type algorithms displayed BER’s of about 30% for the considered sce-
nario after 150 iterations. Note that the performance of NCMAmay surpass that
of the optimal zero-delay LS equalizer due to convergence to a solution with dif-
ferent delay.
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