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Abstract—Spatial audio reproduction addresses the growing
commercial need to recreate an immersive listening experience of
digital media content, such as movies and games. Primary-am-
bient extraction (PAE) is one of the key approaches to facilitate
flexible and optimal rendering in spatial audio reproduction.
Existing approaches, such as principal component analysis and
time-frequency masking, often suffer from severe extraction
error. This problem is more evident when the sound scene con-
tains a relatively strong ambient component, which is frequently
encountered in digital media. In this Letter, we propose a novel
PAE approach by estimating the ambient phase with a sparsity
constraint (APES). This approach exploits the equal magnitude
of the uncorrelated ambient components in the two channels of
a stereo signal and reformulates the PAE problem as an ambient
phase estimation problem, which is then solved using the criterion
that the primary component is sparse. Our experimental results
demonstrate that the proposed approach significantly outperforms
existing approaches, especially when the ambient component is
relatively strong.

Index Terms—Ambient phase, primary-ambient extraction
(PAE), sparsity, spatial audio.

I. INTRODUCTION

S PATIAL audio reproduction of digital media content (e.g.,
movies, games, etc.) has gained popularity in recent years.

Reproduction of sound scenes essentially involves the repro-
duction of point-like directional sound sources and the diffuse
sound environment, which are often referred to as primary and
ambient components, respectively [1], [2]. Due to the percep-
tual differences between the primary and ambient components,
different rendering schemes should be applied to the primary
and ambient components for optimal spatial audio reproduction
[2], [3]. However, existing mainstream channel-based audio for-
mats (such as stereo and multichannel signals) provide only the
mixed signals [4], which necessitate the extraction of the pri-
mary and ambient components from the mixed signals. This ex-
traction process is usually known as primary-ambient extraction
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(PAE). To date, PAE has been applied in spatial audio processing
[3], [5]–[9], spatial audio coding [8], [10], [11], audio re-mixing
[1], [9], [12], [13], and hybrid loudspeaker systems [14]–[16] as
well as natural sound rendering headphone systems [17].
Numerous PAE approaches are applied to stereo and multi-

channel signals. For the basic signal model for stereo signals,
the primary and ambient components are mainly discriminated
by their inter-channel cross-correlations, i.e., the primary and
ambient components are considered to be correlated and uncor-
related, respectively [2]. Based on this model, several time-fre-
quency masking approaches were introduced, where the time-
frequency masks are obtained as a nonlinear function of the
inter-channel coherence of the input signal [1] or derived based
on the criterion of equal level of ambient components between
the two channels [18], [19]. Further investigation of the differ-
ences between two channels of the stereo signals has led to sev-
eral types of linear estimation based approaches [20], including
principal component analysis (PCA) based approaches [2], [16],
[19], [21]–[27] and least-squares based approaches [20], [28].
These linear estimation based approaches extract the primary
and ambient components using different performance-related
criteria [20]. To deal with digital media signals that cannot fit
into the basic signal model, there are other PAE approaches
that consider signal model classification [29], time/phase dif-
ferences in primary components [27], [30], [31], non-negative
matrix factorization [32], independent component analysis [33],
etc.
The above-mentioned PAE approaches often suffer from se-

vere extraction error that takes the form of residual uncorrelated
ambient component in the extracted primary and ambient com-
ponents, especially for digital media content having relatively
strong ambient power [20]. In this Letter, we aim to improve
the performance of PAE by exploiting the characteristics of un-
correlated ambient components of digital media content and the
sparsity of the primary components [34]. These considerations
have led to the novel approach to solve the PAE problem using
ambient phase estimation with a sparsity constraint (APES).
The rest of this Letter is structured as follows. The stereo

signal model is reviewed in Section II. Section III discusses the
proposed APES approach, followed by the experimental results
in Section IV. Finally, our conclusions are drawn in Section V.

II. STEREO SIGNAL MODEL

In spatial audio, PAE is often considered in time-frequency
domain [1], [2], [8], [10], [19], [28], [35]. It is generally as-
sumed that within a time frame (consisting of short frames),
each subband of the input signal contains only one dominant
source, which is considered as the primary component, and PAE
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is independently carried out on each subband of each frame of
the input signal [1], [2], [19], [28]. Denoting the stereo signal
in time-frequency domain at time index and frequency bin
index as , where the (stereo) channel index .
The stereo signal at subband is denoted as

, where
is the upper boundary of bin index at subband [34]. The stereo
signal model is expressed as:

(1)

where and are the primary and ambient components in
the th channel of the stereo signal, respectively. Since the sub-
band of the input signal is generally used in the analysis of PAE
approaches, the indices are omitted for brevity.
The stereo signal model assumes that the primary compo-

nents in stereo signals are correlated, while the ambient compo-
nents in the two channels are uncorrelated. Correlated primary
component could involve inter-channel time and amplitude dif-
ferences [36]. For this Letter, we shall only consider the primary
component to be amplitude panned, i.e., , where

is referred to as the primary panning factor [2], [19], [28].
Amplitude-panned primary components are commonly found
in stereo recordings using coincident microphone techniques as
well as sound mixes using pan-pot stereo techniques [4]. Con-
sidering a channel-based signal, where only the mixed signal is
given as input, it is necessary to estimate . In [20], is esti-

mated as , where , and
are the autocorrelations and cross-correlation of the input

signal in the two channels. Other approaches such as amplitude
histograms [37] can also be used to estimate .
For an ambient component that comprises environmental

sound, it is usually considered to be uncorrelated with the
primary component [1], [2], [20], [30], [38], [39], as well as
having equal power between the two channels. To quantify the
power difference between the primary and ambient compo-
nents, we define the primary power ratio as the ratio of total
primary power to total signal power in two channels, and

. Previous study revealed that the performance of PAE
is highly dependent on , where lower generally indicates
inferior performance [20]. Using the method described in [20],
we computed the (estimated) for many movie and gaming
tracks (e.g., Avatar, Brave, Battlefield 3, BioShock Infinite,
etc.), and found that the percentages for the time frames having
relative strong ambient power (i.e., ) are often over
50% in these digital media content. These occurrences of strong
ambient power case degrade the overall performance of PAE,
and therefore a PAE approach that is able to perform well even
in the presence of strong ambient power is desired.

III. AMBIENT PHASE ESTIMATION WITH

A SPARSITY CONSTRAINT

The diffuseness of ambient components usually leads to
low correlation between the two channels. To produce diffuse
ambient components from raw recordings, decorrelation tech-
niques are commonly used, which mainly include artificial
diffuse reverberation [40], [41] that are widely used in studio,
as well as other decorrelation techniques, such as introducing

delay [42], all-pass filtering [43]–[45], and binaural reverber-
ation [46]. These decorrelation techniques typically produce
equal magnitude of ambient components in the two channels
of the stereo signal. As such, we can express the spectrum of
ambient components as

(2)

where denotes element-wise Hadamard product,
represents the equal magnitude of the ambient components, and
the element in the bin ( , ) of is expressed as

, where is the bin ( , ) of and is
the phase (in radians) of the ambient components. Considering
the panning of the primary component , the primary
component in (1) can be eliminated and (1) can be reduced to

(3)

By substituting (2) into (3), we have

(4)

where represents the element-wise division. Because is
real and non-negative, we derive the relation between the phases
of the two ambient components as

(5)

where . Furthermore, by substituting (4) and
(2) into (1), we have

(6)

Since and can be computed from the input [20], is
the only unknown variable in the right hand sides of (6). It be-
comes clear that the primary and ambient components are de-
termined by , which is solely related to the phase of the am-
bient components. Therefore, we reformulate the PAE problem
into an ambient phase estimation (APE) problem. Based on the
relation between and in (5), only needs to be esti-
mated. A critical relation in the APE framework is that good
extraction performance can be obtained via accurate estimation
of ambient phase. Such a relation is a key advantage of APE
formulation as similar relations are not found in existing PAE
frameworks (e.g., time-frequency masking [1] or linear estima-
tion based PAE [20]).
In general, estimation of ambient phase requires additional

criteria that are based on the characteristics of the primary and
ambient components. One of the most important characteris-
tics of sound source signals is sparsity, which has been widely
used as the critical criterion in finding optimal solutions in many
audio and music signal processing applications [34]. In PAE,
since the primary components are essentially sound sources,
they can be considered to be sparse in the time-frequency do-
main [34]. Therefore, we estimate by restricting the extracted
primary component to be sparse, i.e., minimizing the sum of the
magnitudes of the primary components for all time-frequency
bins:

(7)
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TABLE I
STEPS IN APES

We refer to this approach as the ambient phase estimation with
a sparsity constraint.
However, the objective function in (7) is not convex. There-

fore, convex optimization techniques are inapplicable, and
heuristic methods, such as simulated annealing (SA) [47], are
more suitable to solve APES. But SA might not be efficient
since optimization is required for all the phase variables.
Based on the following two observations, we propose to use
a simple but more efficient method to estimate the ambient
phase. First, the magnitude of the primary component is inde-
pendently determined by the phase of the ambient component
at the same time-frequency bin and hence, the estimation in
(7) can be independently performed for each time-frequency
bin. Note that with this approximation, a sufficient condition
of the sparsity constraint is applied in practice. Second, the
phase variable is bounded to and high precision of
the estimated phase may not be necessary. Thus, we select
the optimal phase estimates from an array of discrete phase
values , where
with being the total number of discrete phase values to be
considered. We refer to this method as discrete searching (DS).
Following (5) and (6), estimates of the primary components
can be computed. The estimated phase then corresponds to
the minimum of magnitudes of the primary component, i.e.,

, where . Clearly,

the value of affects the extraction and the computational
performance of APES using DS. The detailed steps of APES
are listed in Table I.
In addition to the proposed APES, we also consider a simple

way to estimate the ambient phase based on the uniform distri-
bution, i.e., . This approach is referred to as
APEU, and is compared with the APES to examine the neces-
sity of having a more accurate ambient phase estimation in the
next section. Developing a complete probabilistic model to es-
timate the ambient phase, though desirable, is beyond the scope
of the present study.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

Experiments using synthesized mixed signals were carried
out to evaluate the proposed approach. One frame (consists of

Fig. 1. Comparison of ambient phase estimation error between APES and
APEU with (a) ; (b) ; and (c) . Legend in (a) applies to all
the plots.

4096 samples) of speech signal is selected as the primary com-
ponent, which is amplitude panned to channel 1 with a panning
factor , 2, 1. Awave lapping sound recorded at the beach is
selected as the ambient component, which is decorrelated using
all-pass filters with random phase [45]. The stereo input signal is
obtained by mixing the primary and ambient components using
different values of primary power ratio ranging from 0 to 1 with
an interval of 0.1.
Our experiments compare the extraction performance of

APES, APEU, PCA [2], and two time-frequency masking
approaches: Masking 1 [19] and Masking 2 [1]. In the first
three experiments, DS with is used as the searching
method of APES. Extraction performance is quantified by the
error-to-signal ratio (ESR, in dB) of the extracted primary
and ambient components, where lower ESR indicates a better
extraction. The ESR for the primary and ambient components
are computed as

(8)
First, we examine the significance of ambient phase estima-

tion by comparing the performance of APES with APEU. In
Fig. 1, we show the mean phase estimation error and it is ob-
served that compared to a random phase in APEU, the phase es-
timation error in APES is much lower. As a consequence, ESRs
in APES are significantly lower than those in APEU, as shown in
Fig. 2. This result indicates that obviously, close ambient phase
estimation is necessary.
Second, we compare the APES with some other PAE ap-

proaches in the literature. From Fig. 2, it is clear that APES sig-
nificantly outperforms other approaches in terms of ESR for

and , suggesting that a better extraction of pri-
mary and ambient components is found with APES when pri-
mary components is panned and ambient power is strong. When

, APES has comparable performance to the masking ap-
proaches, and performs slightly better than PCA for .
Referring to Fig. 1 that the ambient phase estimation error is
similar for different values, we can infer that the relatively
poorer performance of APES for is an inherent limitation
of APES.Moreover, we compute the mean ESR across all tested
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Fig. 2. ESR of (a)–(c) extracted primary component and (d)–(f) extracted ambient component using APES, APEU, PCA [2], Masking 1 [19], and Masking 2 [1].
Three different values of primary panning factor are used: (a), (d) ; (b) ; (c), (f) . Legend in (a) applies to all the plots.

TABLE II
COMPARISON OF APES WITH DIFFERENT SEARCHING METHODS

and values and find that the average error reduction in APES
over PCA and the two time-frequency masking approaches are
3.1, 3.5, and 5.2 dB, respectively. Clearly, the error reduction is
even higher (up to 15 dB) for low values.
Lastly, we compare the performance, as well as the compu-

tation time among different searching methods in APES: SA,
DS with and 100. The results with and

are presented in Table II. It is obvious that SA requires
significantly longer computation time to achieve similar ESR
when compared to DS. More interestingly, the performance of
DS does not vary significantly as the precision of the search in-
creases (i.e., is larger). However, the computation time of
APES increases almost proportionally as increases. Hence,
we infer that the proposed APES is not very sensitive to phase
estimation errors and therefore the efficiency of APES can be
improved by searching a limited number of phase values.
For the purpose of reproducible research, the source code

and demo tracks can be found in [48]. However, it shall be
noted that the influence of time-frequency transform, though not
studied in this paper, is very critical and requires further inves-

tigation. Meanwhile, the performance of these PAE approaches
shall also be evaluated using more practical signals. Moreover,
ambient components in the complex signals are more prone to
inter-channel magnitude variations, and therefore probabilistic
models based on the statistics of these variations shall be studied
to improve the robustness of PAE approaches.

V. CONCLUSIONS

In this Letter, we presented a novel approach to solve the
PAE problem using APES. Considering that the diffuse am-
bient components in two channels of a stereo signal exhibit
equal magnitude, the PAE problem is reformulated as an am-
bient phase estimation problem. Our novel APE formulation
provides a promising way to solve PAE as the extraction per-
formance is solely determined by ambient phase estimation ac-
curacy. In this Letter, APE is solved based on the sparsity of
the primary components. Based on our experiments using syn-
thesized signals, we found that though under imperfect ambient
phase estimation, the proposed approach still showed significant
improvement (3-6 dB average reduction in ESR) over existing
approaches, especially in the presence of strong ambient compo-
nents and panned primary components.Moreover, the efficiency
of APES can be improved by lowering the precision of the phase
estimation, without introducing significant degradation on the
extraction performance. Future work includes the study on the
influence of time-frequency transform, handling more complex
stereo and multichannel signals using probabilistic models, and
other optimization criteria in APE.
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