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ABSTRACT

We propose a novel edge detection algorithm with sub-pixel
accuracy based on annihilation of signals with finite rate of
innovation [1, 2]. We show that the Fourier domain annihila-
tion equations can be interpreted as spatial domain multipli-
cations. From this new perspective, we obtain an accurate es-
timation of the edge model by assuming a simple parametric
form within each localised block. Further, we build a locally
adaptive global mask function (i.e, our edge model) for the
whole image. The mask function is then used as an edge-
preserving constraint in further processing. Numerical ex-
periments on both edge localisations and image up-sampling
show the effectiveness of the proposed approach, which out-
performs state-of-the-art method.

Index Terms— Annihilation equations, sub-piexel edge
detection, image up-sampling

1. INTRODUCTION

Edge detection is one of the most intensively studied prob-
lems in low-level computer vision, where the goal is to detect
sudden changes (or “discontinuities”) present in an image.
Numerous approaches have been proposed to detect edges
since 1960’s. We refer the readers to [3, 4] for extensive re-
views on various edge detection algorithms. The Canny edge
detector [5] is probably the most widely used method because
of its robustness against noise and the consistent performance
in giving one-pixel thin detection results. However, the de-
tected edge positions are limited to pixel accuracy.

Previous efforts to achieve sub-pixel detection accuracy
have led to the developments of model based fitting algo-
rithms [6, 7, 8, 9, 10], where the optimal edge is given by
minimising the least square errors between the image and an
edge model (typically a step function). It has been shown that
sub-pixel edge position of an ideal step edge can be derived
from the spatial moments of a discrete image [9, 11, 12, 13].
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Fig. 1. (a) A curve with finite rate of innovation (1) and (b)
its associated edge image IC , which is analytic everywhere
except on the predefined curve.

In this paper, we propose a sub-pixel accurate edge de-
tection algorithm, which is motivated by the work on annihi-
lation for curves with finite rate of innovation (FRI) [2]. By
assuming a very simple linear edge model within each block,
we obtain edge models efficiently by minimising the annihi-
lation errors. We will show that this error is simply the prod-
uct between the derivative image (e.g., image gradient) and a
mask function (which contains our edge modelization).

In a sense, the annihilation-driven approach may be
judged similar to model based algorithms [7, 8] with the
philosophical difference: our goal is not to identify the large
gradients (where edges are usually located) by fitting the im-
age with an edge model but rather reconstruct a mask function
that kills (i.e., annihilates) the gradients.

We generalise the same idea to build a continuous domain
global edge model for the entire image, which may subse-
quently be used to assign position-dependent weights in fur-
ther processing. We show through numerical simulations, that
the global edge model is indeed beneficial in preserving sharp
edges in image up-sampling and out-performs state-of-the-art
algorithm.

2. MOTIVATION: FRI CURVE ANNIHILATION

Recent work in [2] extends the traditional FRI sampling and
reconstruction framework [1, 13, 14, 15, 16] to a specific class
of curves, which are defined implicitly as the roots of certain

5977978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



C : µ(x, y) = 0 I ′C(x, y) 6= 0× = 0
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Fig. 2. Spatial domain interpretation of the annihilation equa-
tion (2). The mask function µ(x, y), whose roots defines
the curve, annihilates whatever is different from zero in the
derivative image I ′C .

mask function (Fig. 1(a)):

C :

mask function: µ(x,y)︷ ︸︸ ︷
K0∑

k=−K0

L0∑
l=−L0

ck,le
j 2πk
τx

x+j 2πl
τy

y
= 0, for

{
0 ≤ x < τx,

0 ≤ y < τy.

(1)
Here τx and τy are some positive real numbers that specify the
periods along the x and y directions, respectively. The curve
is uniquely specified by the set of coefficients ck,l, which is of
finite dimension. Hence, the family of curves also has finite
rate of innovation.

For each curve defined implicitly this way, we have an as-
sociated edge image, which is analytic almost everywhere ex-
cept on the curve where it becomes discontinuous (Fig. 1(b)).
It can be shown that the Fourier transform of the edge image
satisfies the annihilation equation [2]:

K0∑
k=−K0

L0∑
l=−L0

ck,lÎ
′
C

(
ωx −

2πk

τx
, ωy −

2πl

τy

)
= 0, ∀ωx, ωy,

(2)
where Î ′C = (ωx + jωy)ÎC(ωx, ωy). Observe that the annihi-
lation equation (2), which is a Fourier domain convolution, is
simply a multiplication in the spatial domain:∑

k,l

ck,lÎ
′
C

(
ωx −

2πk

τx
, ωy −

2πl

τy

)
F−1

←→ µ(x, y) · I ′C(x, y).

Here I ′C
def
=
(
∂
∂x + j ∂∂y

)
IC is the derivative image, which is

different from zero only on the curve C where the edge image
IC is discontinuous (Fig. 2).

Thus, we may treat the function µ(x, y) as a “mask”,
which will automatically annihilate whatever is different
from zero in the derivative image. Thanks to the spatial
domain interpretation, we can apply the annihilation idea
to cases where the curve model (1) is not satisfied exactly.
For instance, we may obtain a curve model approximately
by minimising the annihilation errors in the spatial domain
directly:

min ‖µ · I ′C‖, (3)

where ‖ · ‖ is a norm to be specified (e.g., `2). Note that here
we are no longer restricted to the mask parametrisation (1) in
general.

In our previous work [2], it was difficult to generalise
the exact FRI curve framework to more practical cases, e.g.,
with natural images. The curve model for image edges were
obtained by minimising the Fourier domain annihilation er-
rors (2) in the least square sense. Because (1) is a global
model, we had little control over the geometry of the recon-
structed curve model. The model size (i.e., K0 and L0) was
specified in an ad hoc manner to achieve a good balance be-
tween representing image edges and not over-fitting the given
data. This motivated the development of a new curve model
(or equivalently the associated mask function) that is locally
adaptive.

3. SUB-PIXEL EDGE DETECTION

If we magnify an image by a sufficiently large factor, then we
can well approximate image edges with a straight line: ax +
by + c = 0, where a, b and c are some (unknown) parameters
and x, y are the horizontal and vertical coordinates. In the
annihilation framework, we can treat the edge model as the
roots (i.e., the zero-crossings) of a mask function:

µ(x, y) = ax+ by + c.

Based on the spatial domain interpretation in the previous sec-
tion, the best linear edge model is therefore the one such that
the annihilation error is minimised (3).

The simple line approximation only makes sense when we
consider the problem in a local region. Specifically, the edge
parameters (a, b, c) within a block centred around (x0, y0) is:

min
a,b,c

∫∫
|µ(x, y) · I ′(x, y)|2w(x− x0, y − y0)dxdy

subject to a2 + b2 = 1,
(4)

where w(·, ·) is a localised window, e.g., an isotropic Gaus-
sian with a certain standard deviation σ: 1

2πσ2 exp
(
−x2+y2

2σ2

)
.

The quadratic constraint is to avoid the trivial solution where
a = b = c = 0. In practice, we may locate the blocks around
the Canny edge points and repeat the same process in a block-
wise manner to obtain an edge model for the entire image.
Notice that (4) is a simple quadratic minimisation subject to
one quadratic constraint. The associated Lagrangian is

L(d, λ) = dHAd + λ(1− dHBd),

where

d =

ab
c

 and B =

1 0 0
0 1 0
0 0 0

 .
Here A is a 3× 3 Hermitian symmetric matrix, whose entries
can be obtained directly from the derivative image I ′ with
linear filtering. By setting the derivatives of the Lagrangian
to zero, (4) reduces to an eigendecompsotion problem:

∂L(d, λ)
∂d

= 2(A− λB)d = 0,
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whose closed form solution is

d =

 A1,3(A2,2 − λ)−A1,2A2,3

(A1,1 − λ)A2,3 −A1,3A1,2

A2
1,2 − (A1,1 − λ)(A2,2 − λ)

 ,
where Ai,j for i, j = 1, 2, 3 are entries of A. The Lagrange
multiplier λ are solutions of a quadratic equation1

α1λ
2 + α2λ+ α3 = 0, (5)

where {αi}i=1,2,3 are constants that can be computed directly
from A’s entries.

Once the line parameters d are reconstructed, we can fur-
ther define an edge point within each block. Specifically, an
edge point should be located on the reconstructed line while
having the shortest distance to the block centre:

(xe, ye) = argmin
x,y

(x− x0)2 + (y − y0)2

subject to µ(x− x0, y − y0) = 0,

i.e., xe = x0 − ac
a2+b2 , and ye = y0 − bc

a2+b2 . Note that the
edge model within each block is directly related to the entries
of A, which are given by filtering the derivative image I ′. In
the implementation, we can reconstruct the mask parameters
for the entire image efficiently with a few 2D convolutions.

It is possible to further refine the sub-pixel accurate edge
detection by adapting the shape of the window based on the
estimated edge model, e.g., using an anisotropic Gaussian
window that is aligned with the edge orientation.

4. A LOCALLY ADAPTIVE GLOBAL MASK

The localised linear edge model, which gives reliable estima-
tions of the edge slope and position, may already be useful in
its own right (see an example in Section 5.1). But is it pos-
sible to combine these local edge models and build a single
global mask function? We may then use the global mask to
assign position-dependent weights in subsequent image pro-
cessing [2], e.g., image up-sampling.

A naive approach to build a global mask function is to
sum up the linear edge models over all blocks:

µ(x, y) =

N∑
n=1

(an(x− xn) + bn(y − yn) + cn)w(x−xn, y−yn),

(6)
where (an, bn, cn) are the line coefficients obtained within
each of theN blocks from (4) andw(·, ·) is an isotropic Gaus-
sian window. The straightforward approach suffers from two
problems: (i) The global mask function (6) vanishes in po-
sitions that are not in the neighbourhood of any edge points
(xn, yn); (ii) The coefficients (an, bn, cn), which are obtained
without considering inter-block interferences, are suboptimal
in terms of minimising the annihilation error ‖µ · I ′‖2 for the
global mask function (6).

1The two solutions λmin and λmax correspond to the cases where the
objective function is minimised and maximised, respectively.

v.s.

consistent inconsistent

Fig. 3. 1D illustration of the mask functions in the adja-
cent blocks (solid red and dashed blue curve). Dotted green
curve is the combined mask function. We would like the adja-
cent blocks to be “sign-consistent” and avoid cancelling each
other.

4.1. Mask Parametrisation

One way to address the issue that the mask function reduces
to zero in smooth areas, is to choose the line coefficients as
a = 0, b = 0, and c = 1 explicitly for blocks in smooth areas
(as we do not expect to find any edges in smooth areas):

µ(x, y)=

N∑
n=1

(an(x− xn) + bn(y − yn) + cn)w(x− xn, y − yn)

+

M∑
m=1

w(x− xm, y − ym)︸ ︷︷ ︸
µsmooth(x,y)

. (7)

Here we may choose (xn, yn) as the coordinates of the Canny
edge pixels; while (xm, ym) correspond to the non-edge pix-
els. Note that µsmooth is independent of the edge parameters
(an, bn, cn) for n = 1, · · · , N . The total degrees of freedom
of the global mask function is still determined by the number
of edge points.

4.2. Global Optimisation

Recall that the objective function ‖µ ·I ′‖2 is a quadratic func-
tion of the edge parameters {an, bn, cn}Nn=1. If we follow the
same formulation as in the block-wise process (4), we would
like to minimise the annihilation error subject to the quadratic
constraint a2n + b2n = 1 for each of the N constituent blocks.
The resultant optimisation problem is a quadratic program-
ming with N quadratic constraints (QCQP). In practice, N
is usually very large (in the order of 103), which precludes
finding the closed form solution in general.

Alternatively, we may replace the quadratic constraints
with a set of linear ones, e.g., cn = 1 for n = 1, · · · , N .
One potential issue is that the adjacent blocks might end up
having the opposite signs over the same area, thus cancelling
each other (as is illustrated in Fig. 3). To alleviate this issue,
we can use the block-wise estimation (4) in the n-th block
cprevn as a reference solution:

min
a1···aN
b1···bN
c1···cN

∫∫
|µ(x, y) · I ′(x, y)|2dxdy

subject to sign(cprevn )cn = 1 for n = 1, · · · , N,
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Fig. 4. Comparisons of the edge localization results with
Canny edge detector [5] (white triangles) and the proposed
annihilation-driven approach (yellow dots).

(a) (b)
Fig. 5. Global mask function reconstructed from the given
low-resolution image. (a) Low-resolution image (size:65×65).
(b) Continuous domain mask function (plot size:1000×1000).

which has a closed form solution.

5. EXPERIMENTAL RESULTS

5.1. Edge Detection

We applied the sub-pixel accuracy edge detection algorithm in
Section 3 to grey scale images. The detected edge positions
with the Canny edge detector and the annihilations-driven ap-
proach are compared in Fig. 4. We have achieved sub pixel
accurate edge detections with the proposed algorithm.

5.2. Application to Image Up-sampling

We tested the effectiveness of the global mask function in
preserving image edges with image up-sampling. In exper-
iments, the ground truth high resolution image is first low-
pass filtered with bicubic filter and down-sampled by a fac-
tor of 3. The global edge model is then estimated from the
low-resolution image (Fig. 5). Experimentally, we found that
a more accurate edge model can be obtained when the algo-
rithm is applied to an image that is interpolated from the given
low-resolution one, e.g., the solution of (9). One explanation
is that more edge control points, i.e., larger N in (7), are al-
lowed in that case.

The global mask is then enforced softly as a regularisation
term in the up-sampling process [2]:

min
I

‖∆I‖22 + `

annihilation︷ ︸︸ ︷
‖MDI‖1

subject to ΦI = ILP

. (8)

Here I is the up-sampled image and ILP is the given low-
resolution image; ∆ and D are convolution matrices asso-

Table 1. Comparisons of different up-sampling images with
the ground truth high-resolution image (PSNR).

Image w/o annihilation
constraint (9)

w/ annihilation
constraint (8)

learning-based
algorithm [17]

chip 27.61dB 28.95dB 28.29dB
peppers 29.62dB 30.95dB 30.43dB

bank 22.33dB 23.12dB 22.91dB
MRI 25.25dB 25.85dB 25.40dB

(a) (b)
Fig. 6. Comparisons of different image up-sampling results
(up-sampling factor: 3). (a) Up-sampled image without anni-
hilation constraint (PSNR = 27.61dB). (b) Up-sampled image
with annihilation constraint (8) (PSNR = 28.95dB).

ciated with the discrete Laplacian filter and the first order
derivatives respectively: M is a diagonal matrix with diago-
nal entries specified by the mask function (7); Φ represents
the sampling process (low-pass filtering and down-sampling).
We have chosen the regularisation weight ` = 9 for all the
images. Table 1 summarises the PSNR’s between the up-
sampled images and the ground truth high resolution images.
In our comparisons, we have included one state-of-the-art
learning based algorithm [17] as well as a standard approach,
which minimises the smoothness regularisation subject to the
data-fidelity constraint only:

min
I

‖∆I‖22

subject to ΦI = ILP

. (9)

With the annihilation constraint, the up-sampled images have
sharper edges and much less ringing artifacts (Fig. 6).

6. CONCLUSION

We proposed an efficient edge detection algorithm based on
the annihilation idea. By assuming a simple linear edge model
within each block, we achieved sub-pixel accuracy edge de-
tections. We also generalised the same idea to build a global
edge model for the whole image, which was shown to be ben-
eficial in preserving sharp edges.

The current algorithms rely on the Canny edge detector to
indicate where an edge point should locate approximately. In
the future work, we may make use of the estimated edge infor-
mation, e.g., the ratio between the two eigenvalues from (5),
to decide whether an edge block or an smooth area block
should be placed for a particular position in (7).
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