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ABSTRACT

Signal quality assessment is an important issue as noisy chan-
nels could mean lost information and unreliable data. In the
field of Electrocardiograms (ECG), this is also important as
noise could affect the detection of transient cardiac condi-
tions which occur in these noisy channels. In VPW-FRI, the
common annihilator is used to decompose multichannel sig-
nals with common root locations. Using information from
the common annihilating filter, this paper will show that poor
quality or noisy signals can be classified from the noiseless
signals. This is done through the fact that each channel con-
tributes to the solution of a pulse location and the channels
which contribute below a certain threshold are deemed to be
noisy or of poor quality. We will show that our algorithm
works to the point where VPW-FRI is able to distinguish the
features of the signal well despite any noise present.

Index Terms— ECG, Fetal Heart Rate, Finite Rate of In-
novation

1. INTRODUCTION

Multichannel sampling and reconstruction for Finite Rate
of Innovation (FRI) signals with common support was de-
veloped by Hormati et al. [4] and extended to the Variable
Pulse Width FRI (VPW-FRI) model in [7]. These sampling
schemes were developed on the assumption that the various
channels contained either Diracs or pulses with common sup-
port which means a Dirac would have a single location across
all the channels.

This was developed firstly as a solution to MIMO [4] sys-
tems and later for Electrocardiogram [7] signals which both
fit the assumption of common support. This allowed for ac-
curate estimation of parameters despite noise in any of the
channels. For a MIMO system, this would be all that is re-
quired given that each Dirac is completely described by its
amplitude and location. However, for a signal like an ECG,
where each heartbeat consists of a sum of pulses rather than
just one pulse, it is not as straightforward.

This work was funded by Qualcomm Inc., San Diego

In [2], Quick et al. stated that a sum of seven pulses were
needed for accurate reconstruction of an ECG heartbeat and
this was later reaffirmed by [3,7]. Therefore, the most promi-
nent features might be detectable, but in noise, the smaller
features used by clinicians for diagnosis may not be. The
noise in question here would be interference from the muscles
which causes a high frequency noise which is hard to separate
from the ECG as can be seen in Fig. 1. Also poor contact from
electrodes can cause severe distortions of the signal.
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Fig. 1. Original ECG heartbeat vs ECG with simulated EMG
noise using 0dB AWGN

Noisy data is usually present when using low quality elec-
trodes, in long term monitoring devices and during ECG mon-
itoring whilst exercising. The clinicians usually tend to dis-
card the noisy segments of data as, depending on the level of
noise, they are often unreliable even when denoised.

This poses a problem as firstly large amounts of data are
collected in long term monitoring devices so storage would
be wasted on noisy and unreadable information and secondly
many cardiac conditions are transient in nature and if they
occur during these noisy periods they may be lost.

In this paper, we will propose a feature dependent noise
detection scheme based on the matrix pencil method in VPW-
FRI [3,5,7]. Instead of using frequency bins, mutual informa-
tion [11] and reference signals [9, 10], we will use the ability
of the VPW-FRI algorithm to identify the available features
in the ECG. This stems from the fact that although there may
be noise, the relative ability of the channel to recognise a par-
ticular feature should determine how noisy or usable a signal
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is. This is based on the assumption that within a multichannel
environment, there would be at least one noise free channel.
This is done without reference signals such as templates or
wavelets and the feature itself is derived analytically [7].

The paper will be organised as follows: Section 2 will
provide a background on VPW-FRI and the mechanisms used
which will be relevant. Section 3 will detail the algorithm
used to detect the noisy channels which will be based on the
common annihilator principle. Section 4 will contain descrip-
tions of the data used, the experiments and the results ob-
tained. The paper will be concluded in Section 5.

2. VARIABLE PULSE WIDTH - FINITE RATE OF
INNOVATION

In this section, only a brief description of VPW-FRI and FRI
will be presented which will be sufficient for the purpose of
this paper. For a detailed study, please refer to [1–3, 6].

The VPW-FRI algorithm is an extension of FRI which
was originally proposed by Vetterli et al. [1,6]. The VPW-FRI
algorithm expanded the use of Diracs to variable width pusles
which were applicable to a wider range of signals. The VPW-
FRI algorithm introduced two additional parameters, width
and asymmetry which are represented by ak and dk respec-
tively. This is in addition to the location,tk and amplitude,ck,
specified by the original FRI.

The FRI method depended on recovering parameters from
at least 2K contiguous Fourier coefficients X[m]. These co-
efficients were described by VPW-FRI as

X[m] = X(1)[m] +X(2)[m], (1)

where

X(1)[m] =

K−1∑
k=0

cke
−2π(ak|m|+itkm)/τ (2)

and

X(2)[m] = −
K−1∑
k=0

dksgn(m)e−2π(ak|m|+itkm)/τ . (3)

Finding the tk parameter is a non-linear problem and
therefore uses the annihilating filter, (A∗X)[m] = 0, ∀m ∈ Z
where X is a toeplitz matrix of X[m] values found in Eq. (1).
For the multichannel case, the common annihilator is repre-
sented by


X1

X2

...
XM

 ·


A[1]
A[2]

...
A[K]

 = 0, (4)

where Xm represents the Toeplitz matrices of the M
channels and A[k]Kk=1 are the coefficients of the common

annihilator [7]. This is commonly solved by a Singular Value
Decomposition (SVD) described by

USV H = X (5)

where U is a ((M × (2K + 1)) × (2K + 1)) unitary
matrix, S is a diagonal matrix containing the singular values
and V is also a unitary matrix of size (2K + 1)× (2K + 1).
The polynomials whose roots are the solution for the common
locations are found in the rows of V .

The reconstruction will not be discussed as it is not re-
quired in this paper.

3. NOISY CHANNEL DETECTION

In this paper, the signal quality would be defined as the ability
to locate a feature within the signal. For the case of ECG,
this would be made easier given that ECG generally has quasi
periodic heartbeats which mostly contain the same features.

The ability of VPW-FRI to detect the R peak was dis-
cussed in [7]. It showed that the common locations of the R
peak was found consistently and accurately given that it is the
most prominent feature in an ECG signal. The contribution of
each signal towards the calculation of the common location
however, is still unknown. The features itself can be identi-
fied using the method outlined in [8]. The peaks in the twice
differentiated singular values can be used to identify which
pulses belong to which feature groups.

However, instead of using the V matrix as was done in [7],
consider the U matrix. Each column contains M polynomi-
als stacked vertically which correspond to the M channels.
This allows us to analyse the polynomial of each channel for
a given VPW-FRI pulse and compare them to determine their
input towards calculating their contribution towards identify-
ing a particular pulse.
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Fig. 2. Example of R peak identification in a noisy ECG sig-
nal

In this paper, the first pulse was used since it contains the
most energy. The identification of the most prominent fea-
ture would guarantee that even in the noisiest case, it would

5973



have the best chance of being identified as shown by the ECG
example in Fig. 2. This is due to the fact that it has strong
common roots. The smaller features would be mistaken for
noise and the probability of selecting a noisy channel would
not be better than chance. The assumption being made is that
there is at least one noiseless channel in each multichannel
environment. The algorithm for detecting the noisy channels
is as follows:

1. Normalise all signals to the interval [−1, 1].

2. Proceed through the VPW-FRI algorithm as per normal
until the annihilating filter step.

3. Circularly shift the Xm stack of matrices in Eq. (4) by
one or two blocks for optimal results

4. Use the common annihilator to decompose the stack of
Toeplitz matrices.

5. Divide the first column in U into itsM constituent vec-
tors, which represent the M channels.

6. Identify the maximum coefficient in each vector,CMaxm,
where m = 1 . . .M

7. Removing the largest and smallest value of CMaxm,
calculate the mean, µ, and standard deviation, σ, of re-
maining CMaxm values.

8. The values CMaxm < (µ − σ) are the ones which
contributed the least to the common location and thus
can be deemed the most noisy or it could also contain a
weak signal.

4. RESULTS

4.1. Data

The data used in this paper was a result of a collaboration
between NTU and Tan Tock Seng Hospital (TTSH) where
TTSH conducted ECG stress tests on treadmills and we were
allowed to study the data for denoising and feature detec-
tion. All participants voluntarily signed an agreement allow-
ing their data to be used anonymously for research purposes.
The data consists of 12 lead ECG with leads I-III, aVR, aVL
and aVF and V1-V6. The BRUCE protocol for the stress test
was observed, which increased the incline and speed of the
treadmill every 3 minutes. The tests were conducted by a
physician and the ECG technician. The data was collected
using the GE Marquette CASE Stress system with a T2100
treadmill. The data is sampled at 200Hz.

4.2. Experiment

The experiment conducted was a simple one. Using the 12
lead ECG described in Section 4.1, a clean segment of data

-5dB 0db 5dB 10dB
Hit(%) 100 100 90.4 56.3

Miss (%) 0 0 9.6 43.7
False Detection 0 0 108 521

Table 1. Results of simulation for noisy channel detection

was extracted. Additive Gaussian White Noise (AWGN) was
added from−5dB to 5dB in increments of 5dB by randomly
selecting 3 channel numbers from 0−12. If the channel num-
ber 0 was selected, then only two channels would have added
noise. The variable number of channels added slightly more
difficulty to the challenge.At each noise level, 1000 simula-
tions were carried out. The algorithm in Section 3 would be
applied and the channel numbers would be compared to gauge
accuracy.

4.3. Results

The performance of the algorithm was measured using three
performance metrics, successful hit percentage, miss percent-
age and false detection. The hit percentage would be the num-
ber of simulations where all the noisy channels were identi-
fied correctly. The miss percentage would be when one or
more channels were identified wrongly. The false detection
was calculated as the total number of misclassified channels
over the 1000 simulations.

The results of the simulations are presented in Table 1. It
shows that at levels of intense noise, −5dB and 0dB, the al-
gorithm worked perfectly. It was able to identify the noisy or
distorted channels with absolute precision. The feature based
system worked as even if the second most identifiable feature
was used for the noise detection, the algorithm worked per-
fectly.

As for the simulations conducted at 5dB, the algorithm
suffered in performance as the R peak became easier to de-
tect as the noise becomes milder. Therefore, the noisy chan-
nels contributed significantly more to the common roots and
therefore increase the chances of misclassification .

At 10dB, the performance of the algorithm was only
slightly better than chance. This is because at this level of
noise, the detection of the R peak is almost a trivial problem
as can be seen in Fig. 3. Therefore, the noisy channels con-
tribute almost as much as the clean channels. At this level of
noise, it won’t affect the reconstruction of the feature. The
second and third most prominent features of the ECG could
be used in this case, but ECG is a special case, given the
multiple features it has, and for the sake of generality only
the most prominent feature was used.

Conversely, this could be thought of as a measurement
of signal quality. The lower quality signals can be identified
as their features may be distorted or obscured. This would
mean that it is not specific to any particular type of noise and
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Fig. 3. A noiseless channel (above) and a noisy channel (be-
low).

will be able to classify any channel based purely on how the
given noise obscures the features as the algorithm makes no
assumptions on the noise model.

A question may arise as to what may happen if all the
channels are noise free. For that case, a no reference method
would have to be derived, which would either require a more
sophisticated method of calculating the thresholds or an em-
pirically derived threshold for specific applications. Also, an-
other subject of ongoing research is to determine the specific
level of contribution of each channel rather than just classify-
ing it into usable and unusable. This would broaden the scope
of applications.

5. CONCLUSION AND FUTURE WORK

The ability of the algorithm described in Section 3 has uses in
the field of biomedical signals where either physiological or
environmental noise plays a significant factor when acquiring
the signals. In the multichannel environment, in some cases,
each individual channels yields specific information for clin-
icians and researchers and therefore would be lost or deemed
unreliable. The method presented in this paper proved reli-
able for detecting noisy or poor quality channels and can be
applied generally to scenarios with a variety of distortions or
noise.

Some examples of future work involve feature detection
in multimodal signals where each channel is a different phys-
iological signal. By grouping together the channels with com-
mon features, relevant channels for those specific features
could be identified. An example would be a hospital bed-
side setting where multiple signals are being recorded simul-
taneously; ECG, blood pressure, EEG and breathing rate for
example. The algorithm could identify the correlated chan-
nels and extract relevant features from those channels whilst
identifying relationships between the other channels. This is
the subject of ongoing research.

In conclusion, the algorithm presented here would work
for more applications than just noise detection. Also, given

that it was formulated within the structure of the VPW-FRI
algorithm, it is convenient to apply when identifying specific
pulses within a multichannel signal.
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