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ABSTRACT

We consider the problem of modelling asymmetric pulse trains as
finite-rate-of-innovation (FRI) signals. In particular, we show that
the sum of amplitude-scaled and time-shifted pulses with different
asymmetry factors is an FRI signal. Such signals frequently arise
in applications such as ultrasound and radio detection and ranging
(RADAR) where the received signal has skewed pulses. In this pa-
per, we model the asymmetric component of a pulse using its deriva-
tive. A sampling kernel with a sum-of-sincs frequency response
is used to measure the samples, and a modified annihilating filter
method is applied on the samples to estimate the parameters of the
FRI signal. We show accurate reconstruction for signals containing
asymmetric Gaussian, Cauchy-Lorentz, and sinc pulses. Analysis of
the proposed scheme in the presence of noise shows that the error in
the estimated parameters decreases by oversampling the signal.

Index Terms— Finite-rate-of-innovation (FRI), sampling, sum-
of-sincs (SoS) kernel, asymmetric pulses, annihilating filter

1. INTRODUCTION

Vetterli et al. [1] proposed a technique to sample and recon-
struct a class of signals that are neither bandlimited nor belong
to a shift-invariant space. This class of signals, termed finite-rate-of-
innovation (FRI) signals, are completely specified by a finite number
of parameters per interval. Vetterli et al. showed that a stream of
Dirac impulses, nonuniform splines, and nonuniform polynomial
splines belong to the class of FRI signals. Tur et al. [2] showed that
signals that contain shifted and scaled pulses are FRI signals, which
can be used to model ultrasound signals. In this paper, we address
the following questions: (1) Can we model signals with varying
pulse shape as FRI signals? (2) If yes, what should be the signal
model? (3) Can the signal be perfectly reconstructed by sampling
with the sum-of-sincs (SoS) sampling kernel?
Consider a signal z(t) represented as

K
a(t) = rehi(t — t), (1)
k=1

where 7, t, are the amplitude, and time-delay, respectively, of the
k™ pulse hx(t). x(t) can be modeled effectively as an FRI sig-
nal if {hy(¢)}£_, are related to a known pulse shape template h(t)
by a finite set of parameters. One such parameter is the degree of
asymmetry of h(t). In Figure 1, four pulses with varying degree of
asymmetry (decreasing from left to right) are shown.

In this paper, we address the change in the pulse shape resulting
due to varying degrees of asymmetry. We show that the derivative
operator can be used to model asymmetric pulse signals. We use a
modified version of the popular annihilating filter method to estimate
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Fig. 1. A signal consisting of four pulses having different degrees of
symmetry.

the parameters of the FRI signal.

This model can be used in pulse-based probing applications such
as ultrasound and RADAR. Consider a setup where an ultrasound
pulse h(t), generated by an immersion transducer is used to probe
a block made up of K — 1 layers of uniform acoustic impedance
immersed in water. The ultrasound pulse is reflected at the bound-
ary of layers having different acoustic impedances. The reflections
collected by the receiver are given by

K
2(t) = Y reh(t—ty), @)
k=1

where 7 and ¢, are the amplitude and time-delay, respectively, of
the k*® reflected pulse [2]. This model assumes that the pulse shape
does not change at every reflection. Such reflections, called spec-
ular reflections [3], occur when the thickness of each of the layers
is larger than the wavelength of ultrasound, each layer is homoge-
neous, and the boundaries of the layers are smooth. In many practi-
cal scenarios, these assumptions do not hold. For example, in prac-
tice, the typical frequency and wavelength of the ultrasound used
are 10 MHz and 0.1 nm, respectively. A particle smaller than this
wavelength scatters the ultrasound wave in all directions. Such re-
flections result in the skewing of the pulse shape h(t), which cannot
be modeled by (2). In contrast, (1) allows one to take into account
skewing of the pulses. A specific model for signals containing pulses
of varying degree of asymmetry and width was presented by Baech-
ler et al. [4][5], who showed that the asymmetry and width of a
Cauchy-Lorentz pulse can be estimated using the annihilating filter
technique. However, the problem of modeling pulses of varying de-
gree of asymmetry for a more generic pulse shape was not addressed.
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1.1. Related literature

Vetterli et al. [1] showed that the problem of sampling and recon-
struction of FRI signals can be reduced to one of finding the param-
eters of the signal from its frequency-domain samples. The spectral
samples are estimated by measuring the signal through an ideal low-
pass filter. Dragotti et al. [6] proposed that functions satistying the
Strang-Fix conditions can be used as sampling kernels to compute
the moments of the signal. Dragotti et al. used the exponential re-
producing kernel for recovering the exponential moments of a signal.
Uriguen et al. [7] recently showed that by choosing the weighting
coefficients optimally, arbitrary sampling kernels can be used to re-
produce exponential signals. Seelamantula and Unser [8] designed
sampling kernels using resistor-capacitor (RC) circuits to sample and
reconstruct a stream of nonuniformly spaced Dirac impulses. An
SoS sampling kernel was proposed by Tur et al. [2] to recover the
Fourier measurements of periodic FRI signals. To handle aperiodic
FRI signals, the sampling kernel was periodized. Mulleti et al. [9]
showed that the sampling kernel need not be periodic if the sam-
pling frequency is an integral multiple of the fundamental frequency
of the sinc kernel. Due to the simplification offered by the technique
of Mulleti et al., in this paper, we use the SoS kernel without peri-
odization for sampling FRI signals. For reconstruction of the signal
from its samples, the annihilating filter is used. Kusuma and Goyal
[10] showed that the FRI methodology has a super-resolving prop-
erty owing to the use of high-resolution-spectral-estimation (HRSE)
techniques [11]. The FRI sampling framework has been applied to
the estimation of time sequences of action potentials in neurophys-
iological data [12]. Variable pulse-width finite-rate-of-innovation
(VPW-FRI) signals were introduced by Baechler et al. for compres-
sion of electrocardiogram (ECG) signals [4]. An ECG signal can
be described by a set of parameters, the cardinality of which is of
the order of the number of pulses, thus allowing for effective com-
pression of the ECG signal. This algorithm has been extended for
multichannel ECG data compression by Nair et al. [13]. The VPW-
FRI sampling framework has also been used to estimate the heart
rate from fetal ECG data [14].

1.2. Contributions of this paper

We propose a model for generating asymmetric pulse signals from
a given pulse shape, such that the resulting signal takes the form
of an FRI signal. We use a modified annihilating-filter technique
to estimate the time-delays of the asymmetric pulses. We show re-
sults of applying the asymmetric FRI signal sampling technique on
Gaussian, Cauchy-Lorentz, and sinc pulses. Performance of the re-
construction algorithm in the presence of noise is analyzed and the
improvements obtained by oversampling the signal are reported.

2. ASYMMETRIC PULSE FRI (AP-FRI)

2.1. Generating asymmetric pulses

Consider a symmetric pulse h(t), which is used to generate pulses
of varying degree of asymmetry. One way to achieve this is to use
the derivative of the pulse. The pulse defined as

dh(t
has(t) = ah(t) + 8900 o, 5 € T — {0} ®
is asymmetric. Let us show this by working in the Fourier domain.
As the pulse h(t) is symmetric, its Fourier transform H (w) is real
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Fig. 2. Asymmetric pulses hq,3(t) generated using h(t) = e /2,
and 0 = tan""(£); (a) § = 0.2, and (b) § = 0.37.

[15]. Thus, the Fourier transform of its derivative given by

dh(t) F .
ar — jwH (w), 4)

is imaginary. A signal having a purely imaginary Fourier trans-
form is anti-symmetric in the time domain. Thus, the pulse
ha,3(t) containing non-zero symmetric and anti-symmetric com-
ponents is asymmetric. The degree of asymmetry is quantified by
6 =tan~! (g) By changing « and S, pulses of;/ary2ing degrees of

—t% /20
e

asymmetry can be generated. Using h(t) = witho =1,

the asymmetric pulses obtained are shown in Figure 2.

2.2. Asymmetric pulses and FRI

Consider a signal x(¢) consisting of K asymmetric pulses given by

K
2(t) =D hay,p, (t—th), Q)
k=1

where hq g(t) is defined in (3). The amplitudes of the symmetric
and anti-symmetric components and location of the k*® pulse are
given by a, B, and ty, respectively. Let the time-delays {tx } 1,
be arranged in ascending order. x(¢) is an FRI signal because it
is specified by a finite set of parameters. Defining a window [0, 7]
such that {tx }#—, € [0, 7], the rate of innovation of z(t) is given by
p = 3K /7. The Fourier transform of z(t) is X (w) = Zszl (ar +
jwPBr)H (w)e . For w, € R and a set of consecutive integers
K = [-M, M], chosen such that H (mw,) # 0, m € K we define,
Y(mw,) 2 X(mwo)/H(mw,),m €K
K
= Z(ak + jmwo By )e Itk (6)

k=1

The condition on the cardinality of K and w, comes from the frame-
work used to reconstruct the signal x(¢) from its samples, given in
Section 2.3.

2.3. Modified annihilating filter

The annihilating filter is a spectral estimation tool that can be used
to compute the time-delays {t;, }5_; from Y (mwo)|mex in (6). The
problem of estimating the time-delays can be rephrased as finding
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the exponentials {uy } £, given p[n] such that

K
pln] = Z cruyp + dpnuy,n € [-2K,2K], @)
k=1

where cj, and dj, are the unknown amplitudes. To solve for uy from
p[n], we make the following proposition.

Proposition: The signal p[n] = Zle ckuy + dgnugp, where
ck,dr € R and uy € C, is annihilated by the filter, A(z) =

Hf:1(1 - ukzil)?

Proof. The filter A(z) = Hle(l — ukz~1)? can be expanded as,
A(z) = 322K A[n]z~", with the coefficients A[n]. The output on
filtering p[n] with A[n], forn = —2K,—2K + 1,---2K is given
by

z[n] =

>~ Afflpln - 1),
£=0

K 2K K 2K
= Z Crug Z Aluy “ + Z dinuy, Z Allug "
k=1 (=0 k=1 =0

N—— ——
A(ug)=0 A(ug)=0

K 2K
= > deuip > LA[u”
k=1 £=0
N—_——

_,dAk) -0
z=uy

dz

= 0.

Thus, the filter A(z) = Hszl (1 — upz~*)? annihilates the signal
pln]. |

Using the above proposition in (6), we find that A(z) =
[T, (1 — e73ok 2=1)? annihilates the sequence Y (1mw,)|mex
when M > 2K. The roots of the filter A[n] are {e 1"}, with
multiplicity two. The condition on w, for unique identification of
{ti }, from {e™ 3w VK s that w, < 27 /tk.

2.4. Amplitude of symmetric and anti-symmetric components

On computing the time instants {t3 } &—; in (6) using the annihilating
filter, the amplitudes of the symmetric and asymmetric components
of the pulse given by {a, ﬂk}szl can be estimated by solving the
linear system of equations, Y = Ar, where Y, A, r are defined in
equations (8)-(10). The amplitudes of the symmetric and antisym-
metric components are given by o, = 1, and S = ri1xk, fork =
1,2,--- K.

2.5. Sampling kernel

Knowing the frequency samples X (mwo)|mex, the unknown pa-
rameters {a, Bk, tx }ie; are specified by using the modified an-
nihilating filter technique followed by solving a system of linear
equations. Thus, the goal is to estimate the frequency samples
X (mwo)|mex from minimum number of samples of z(¢). An
SoS sampling kernel, given in frequency domain by S(w) =

> mex Sinc (Wi — m), can be used to compute X (mwo)|mek,

when the sampling frequency ws = Pw, for P > |K| = 2M + 1
and P € N [9]. Using the minimal sampling frequency, we set

o
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Fig. 3. (a) Stream of K = 4 Gaussian pulses, with ¢ = 0.03 and
having different asymmetry factors; (b) Impulse response of SoS
sampling kernel with M = 2K and wo = m/2; (c) The output of
the sampling filter and samples of the output at a frequency of 4.25
Hz; (d) Original and reconstructed asymmetric FRI signal.

M = 2K and thus a sampling frequency of ws = (2M + 1)wo.

2m

The corresponding sampling interval is Ty = 2~

3. SIMULATION RESULTS
3.1. Asymmetric Gaussian pulse

Using h(t) = e=*/2% in (3) with & = 0.03, the asymmetric Gaus-
sian pulse is given by

_ t _
has(t) = ae ¥/ ~Be #/20% o, B € R - {0}.

Using this pulse shape in (5), with K = 4 results in the signal shown
in Figure 3(a). The impulse response of the SoS sampling kernel,
with M = 2K and w, = 7/2 is shown in Figure 3(b). The samples
obtained at the critical sampling rate of ws = (2M +1)w, are shown
in Figure 3(c). On estimating the parameters of the signal from the
samples using the modified-annihilating filter and the resulting linear
system of equations, the signal reconstructed with an accuracy down
to machine precision is shown in Figure 3(d).

3.2. Cauchy-Lorentz and sinc pulses

A sequence of asymmetric pulse shapes generated using Cauchy-
Lorentz and sinc pulse shapes is shown in Figures 4(a) and 4(b).
The Cauchy-Lorentz asymmetric pulse is given by ha g(t) =
aﬁ + ﬁﬁ%, and the sinc asymmetric pulse shape is given

by ha,g(t). = asinc(Bt) + .ﬂB"tCOS(B;;QZ_Sin(BM)‘ Applying the
FRI sampling and reconstruction schemes on the asymmetric signals
with K = 4, M = 2K, w, = 7/2 and ws = (2M + 1)w,, the
reconstructions to machine precision are shown in Figures 4(a) and

4(b).
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Fig. 4. (a) Stream of K = 4 sinc pulses, with B = 100 and different
asymmetry factors; (b) Stream of K = 4 Cauchy-Lorentz pulses,
with a = 0.002 having different asymmetry factors. In both cases,
an SoS sampling kernel with M = 2K, w, = 7/2 and sampling
frequency of 4.25 Hz is used.
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Fig. 5. (a) Average error in the estimated time-delay, and (b) average
error in the asymmetry factor of two asymmetric Gaussian pulses for
samples corrupted by additive white Gaussian noise. The effect of
oversampling (OS) on the accuracy of the parameters for oversam-
pling factors of 1,2, 4, 8.

3.3. Noise analysis of asymmetric FRI pulse signals

In this section, we analyze the performance of the FRI reconstruction
technique when the samples of the asymmetric signal are corrupted
by additive white Gaussian noise (AWGN). Consider the FRI signal
given in (5), with two asymmetric Gaussian pulses. Let the time-
delays, amplitudes of symmetric and asymmetric Gaussian com-
ponents be given by t = [1/4 3/4]7, a = [22]F, and B =
[0.1 0.05]T, respectively. Therefore, the degree of asymmetry is
6 = [0.050.025]. The samples obtained using the SoS kernel,
with M = 2K, wo = /2 and ws = (2M + 1)w, are corrupted
by AWGN. Let the estimated parameters, time-delay and degree of
asymmetry be denoted by t and 0, respectively. It has been shown in
literature that, in general, Cadzow denoising [16] and oversampling
techniques can be used to improve the noise performance of the FRI
algorithm [2]. In this paper, we study the effect of oversampling
on the reconstruction of asymmetric FRI sampling and reconstruc-

Table 1. Error in the estimated time-delays of pulses whose shape is
unchanging (a), and of pulses whose degree of asymmetry changes
with time (b), when the samples of the signal are corrupted by
AWGN. The errors in the estimated time-delays of Gaussian and
Cauchy-Lorentz pulses are reported in decibels.

tion algorithms. The errors ||t — &||? and ||@ — 6]|? averaged over
1000 realizations of AWGN are shown in Figure 5. The maximum
improvement in the error of the estimated time-delay and degree-of-
asymmetry parameters with an oversampling (OS) factor, OS= 8§,
over those estimated from samples with OS= 1 are 8.02 dB and
5.44 dB, respectively. In Table 1, we compare the estimated time-
delays of the FRI reconstruction algorithm [2] applied to a signal
with unchanging pulse shape with our proposed asymmetric FRI re-
construction algorithm for the signals given in (5). We observe that,
in the presence of noise, the asymmetric FRI algorithm is more sus-
ceptible to noise in comparison to the FRI algorithm for unchanging
pulse shape. This is attributed to the fact that there are multiple roots
in the asymmetric FRI framework, which makes the annihilating fil-
ter more sensitive to noise. The issue of making the annihilating
filter noise-robust requires more investigation.

4. CONCLUSIONS

We have addressed the problem of modeling asymmetric pulse trains
as FRI signals. We have proposed to use the derivative of the pulse
shape to model the asymmetric component of the pulse. A modi-
fied annihilating filter was used to estimate the time-delays of the
asymmetric pulses. Experimental results show that, using the pro-
posed technique, exact sampling and reconstruction of asymmetric
signals generated using Gaussian, Cauchy-Lorentz and sinc pulse
shape templates is achieved. Performance analysis in the presence
of noise showed that multiple roots arising in the asymmetric FRI
problem makes the annihilating filter more sensitive to noise. Exper-
imental results show that oversampling the signal decreases the error
in the estimated parameters.
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