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ABSTRACT

Conventional Nyquist sampling and reconstruction of square
waves at a finite rate will always result in aliasing because
square waves are not band limited. Based on methods for sig-
nals with finite rate of innovation (FRI), generalized Analog
Thresholding (gAT-n) is able to sample square waves at a much
lower rate under ideal conditions. The target application is
efficient, real-time, implantable neurotechnology that extracts
spiking neural signals from the brain. This paper studies the ef-
fect of integrator noise and quantization error on the accuracy of
reconstructed square waves. We explore realistic values for in-
tegrator noise and input signal amplitude, using specifications
from the Texas Instruments IVC102 integrator chip as a first-
pass example because of its readily-available data sheet. ADC
resolution is varied from 1 to 16 bits. This analysis indicates
that gAT-1 is robust against these hardware non-idealities where
gAT-2 degrades less gracefully, which makes gAT-1 a prime tar-
get for hardware implementation in a custom integrated circuit.

Index Terms— square wave, compressed sensing, sub-
Nyquist, finite rate of innovation, neurotechnology, analog
thresholding, massive-scale neural recording, electrode arrays,
optical methods

1. INTRODUCTION

The Nyquist-Shannon sampling theorem states that a signal that
contains frequency components less than f Hz can be com-
pletely reconstructed from a sequence of measurements spaced
less than 1

2f
seconds apart. Direct sampling of the signal at

less than 2f Hz results in distortion in the reconstructed sig-
nal, called aliasing. In the case of square waves, which contain
non-zero amplitudes at infinitely large frequencies, no finite
sampling frequency allows perfect reconstruction of the orig-
inal signal from its samples using standard Nyquist sampling
and reconstruction.

However, alternative methods of sampling and reconstruc-
tion based on compressive sensing [1] and signals with finite
rate of innovation [2] do allow square waves to be sampled
at much lower frequencies without aliasing. Signals with a
finite rate of innovation are described by a finite number of
parameters per unit time. This simplifying constraint allows
various iterative techniques to recover the original signals from
samples obtained at lower-than-Nyquist rates. Techniques for
sub-Nyquist sampling for the related problem of level-crossings
times [3] and for sub-Nyquist sampling of single transitions in
a square wave [4] have previously been studied. The method

studied in this paper is able to handle multiple square pulses in
a single sampling period. We characterize the performance of
this method subject to quantization error and integrator noise
noise, in order to understand feasibility of hardware implemen-
tation.

Generalized Analog Thresholding (gAT) is one emerging
class of method for sampling and reconstructing square waves,
derived from the literature on finite rate of innovation, with ap-
plication to efficient, real-time neurotechnology for basic neu-
roscience and conditions like epilepsy and paralysis. Methods
from the gAT class are denoted gAT-n, where integer n ≥ 1 is
the maximum number of square wave pulses within the analy-
sis interval. The sampling process is described in Section 2.2,
and the reconstruction process is described in Section 2.3.

In one possible application of gAT to neurotechnology, a
dense, implanted intracortical electrode array records action
potentials (spikes) from thousands of neurons simultaneously,
monitoring for pre-seizure activity. Each channel multiplexes
through a comparator to determine if the voltage from the
channel passes a selected threshold [5]. The output of the com-
parator appears as a sequence of square waves, which is the
input signal for gAT. The goal is for gAT to reliably sample and
reconstruct these square wave signals at tens of hertz, where
spiking neural activity is routinely sampled at 5 – 30 kHz.

The goal of efficient, large-scale spike sampling and recon-
struction is made difficult by noise sources and quantization
error. Previous work has attempted to deal generally with noise
in FRI methods [6, 7, 8]. In this paper, we focus on hardware-
related non-idealities that are specific to gAT, including inte-
grator noise and quantization error. We explore three orders of
integrator noise and realistic square wave amplitudes based on
the IVC102 integrator chip [9]. We chose the IVC102 primar-
ily as a first-pass example with readily available specifications
rather than as a canonical low-power chip. Our model for the
input signal, sampling, and reconstruction is described in Sec-
tion 2. The effects of integrator noise and quantization error are
systematically explored in Section 3.

2. SIMULATION MODEL

This section describes our model to evaluate hardware feasibil-
ity of gAT. The input signal model is described in Section 2.1.
The sampling stage, including integrator noise and ADC quan-
tization error, is explained in Section 2.2. The reconstruction
process is described in Section 2.3. Model parameter values for
simulation are documented in Section 2.5.
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2.1. Input Signal

The signal for each sampling interval consists of a sequence of
square waves. It is possible for a sequence to consist of zero
square waves. A possible signal is shown in Figure 1.
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Fig. 1. An example signal for the sampling interval from t = 0
to t = T . This signals contains two square waves. The first
pulse has a duration of w1 and is centered at time t1, and the
second pulse has a duration of w2 and is centered at time t2.

More formally, suppose that a sampling interval of length T
consists of n square waves, centered on t1, . . . , tn with widths
w1, . . . , wn. The values are valid only when 0 ≤ t1 − w1

2
,

ti + wi
2
< ti+1− wi+1

2
for i ∈ {1, . . . , n−1}, and tn + wn

2
≤

T . In other words, the square waves are in order and do not
overlap. The signal is then defined as:

x(t) =


1 t1 − w1

2
≤ t ≤ t1 + w1

2

...
...

1 tn − wn
2
≤ t ≤ tn + wn

2

0 otherwise

(1)

2.2. gAT Sampling Stage with Quantization Error and In-
tegrator Noise

The analog preprocessing stage for gAT-n computes the first
2n repeated integrals of the signals, evaluated from the start to
the end of the sampling interval. The continuous-time behavior
of this stage is evaluated with exact integration, rather than by
numerical integration in discrete time.

Under noise-free conditions, the gAT samples are denoted
y1, . . . , y2n, where

x1(t) =

∫ t

0

x(τ) dτ (2)

xk+1(t) =

∫ t

0

xk(τ) dτ for k ∈ {1, . . . , 2n− 1} (3)

yk = xk(T ) for k ∈ {1, . . . , 2n} (4)

The yk are then quantized through an ADC to allow recon-
struction of t1, . . . , tn, w1, . . . , wn on a digital system. The
n-th order integration motif was previously described for sam-
pling in FRI [10].

The full gAT sampling stage including integrator noise and
quantization error is shown in Figure 2. First, the α scales the
continuous-time square-wave input x(t). Next, a serial bank of
noisy integrators introduces w1(t), . . . , w2n(t), which are in-
dependent, identically-distributed zero-mean continuous-time
white Gaussian noise processes. Integrator outputs are scaled
by βi to maximally utilize the dynamic range of the ADCs. The

ADC-sampled values y1, . . . , y2n are passed to the gAT recon-
struction stage (Section 2.3). The scaling factors α and βi are
chosen by a process described in Section 2.5.

After integration, gAT samples are quantized through an
ADC. In practice, ADCs introduce several non-idealities [11,
12, 13]. Aperture jitter samples the signal at irregular intervals.
Non-linear distortion corrupts the analog signal before quanti-
zation. Quantization introduces numerical error to varying ex-
tents based on bit resolution. Our model for the ADC includes
only quantization error.

A corresponding noise model for analog integration con-
sists of continuous-time white Gaussian noisew1(t), . . . , w2n(t)
added to the input of each stage in a sequence of ideal integra-
tors [10]. The integral of w1(t) from t = 0 to t = 1 is also
Gaussian: ∫ 1

0

w1(t) dt ∼ N (0, σ2) (5)

The IVC102 data sheet specifies σ for a wide range of input
capacitance in the top right panel on page 4, titled “Total Output
Noise vs CIN” [9].

Signal
x(t)

w1(t)

ADC

FRI Sample
y1

...

w2n(t)

ADC
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y2n

x1(t)
x2n(t)

α
β1

β2n

∫ dt ∫ dt

Fig. 2. gAT sampling stage, modeled with integrator noise and
quantization error. A square wave input signal x(t) enters a
serial bank of noisy integrators and ADCs to obtain the gAT
samples y1, . . . , y2n. Scaling factors α and βi are chosen to
maximize performance under worst-case noise-free conditions
(see Section 2.2 for details).

To simulate the system shown in Figure 2, the exact FRI
samples y1, . . . , y2n are computed. Next, the noise caused by
a single term wk at time step k on (2n − k + 1) present and
future FRI samples yk, . . . , y2n is simulated as a (2n−k+ 1)-
dimensional zero-mean jointly Gaussian random variable zk,
with the following terms in the i-th row and j-th column of its
covariance matrix [10]

Σi,j =
σ2

i+ j − 1
T (i+j−1) (6)

In the noisy integrator model, the i-th noisy FRI sample ỹi
is simulated as the sum of the i-th noise-free FRI sample (equa-
tion 4), and the corresponding (k− i+1)-th dimension of each
multivariate random variable z1, . . . , zk. See [10], p. 48 for an
analytical expression of the covariance matrix corresponding to
this procedure.

2.3. gAT Reconstruction Stage for Square-Wave Pulses

The reconstruction process takes FRI samples y1, . . . , y2n and
computes estimates of the pulse times and pulse widths. For

5953



gAT-1, a closed-form solution can be computed, disregarding
non-idealities. Assuming only one square wave pulse occurs in
the interval, centered at time t1 and width w1,

x1(t) ≡
∫ t

0

x(τ) dτ (7)

=


0 t < t1 − w1

2

t− (t1 − w1
2

) t1 − w1
2
≤ t ≤ t1 + w1

2

w1 t1 + w1
2
< t

(8)

x2(t) ≡
∫ t

0

x1(τ) dτ (9)

=


0 t < t1 − w1

2
1
2
[t− t1 + w1

2
]2 t1 − w1

2
≤ t ≤ t1 + w1

2

w1(t− t1) t > t1 + w1
2

(10)

y1 ≡ x1(T ) = w1 (11)
y2 ≡ x2(T ) = w1(T − t1) (12)

Reordering these terms, the parameters t1 and w1 of the
pulse are estimated as:

ŵ1 = y1 (13)

t̂1 = T − y2
y1

(14)

For gAT-2, we also determined a closed-form solution, not
included here due to space constraints. For n > 2, the solution
may be computed numerically, not explicitly confirmed or ex-
plored in this work. The reconstructed pulse parameters were
computed using standard MATLAB double precision variables.

2.4. Metrics to Evaluate Signal Reconstruction Quality

We examined gAT performance on the basis of error in the re-
constructed pulse time and width, defined as follows. Denote t
as the true pulse time, t̂ as the reconstructed pulse time, w as
the true width, and ŵ as the reconstructed width. The mean un-
signed error for the reconstructed time is E(|t̂− t|). The mean
unsigned error for the reconstructed width is E(|ŵ−w|). Both
are non-negative as the absolute value of the signed error.

2.5. Ranges of Model Parameter Values Explored in Simu-
lation

Input square wave signals are generated as follows. Each sam-
pling interval for gAT-1 contains one randomly generated pulse.
Each sampling interval for gAT-2 contains two randomly gen-
erated pulses. The time of each pulse is selected uniformly
from the entire sampling interval, while ensuring pulses are
non-overlapping.

Pulse width w is drawn from a log-normal distribution
lnN (µ = −9, σ = 1.15). This generates typical pulse widths
between 0.013 ms and 1.12 ms. These values are selected to
model the distribution of the time a neural spike exceeds a
comparator threshold in the analog thresholding approach [5].
Action potentials usually in range of 1 ms width, but the time
spent above comparator threshold is considerably shorter.

The integrator noise parameter σ from Equation 5 and scal-
ing parameters α and βi from Figure 2 are selected based on an
example commercial integrator, the Texas Instruments Preci-
sion Switched Integrator Transimpedance Amplifier (IVC102)

[9]. The data sheet specifies output noise, input current range
and output voltage range. The root mean squared output noise
ranges from 4 µV to 300 µV for a 1 ms integration time. Un-
der the assumption that the integrator output noise scales lin-
early with integration time, the standard deviation of the output
ranges from 4

√
T µV to 300

√
T µV. For an interval of 1 sec-

ond, this standard deviation is the σ and ranges from 0.1 mV to
10 mV.

With regards to input and output ranges, the IVC102 is a
transimpedance amplifier, which means that it integrates input
current and outputs voltage, as specified in the data sheet:

VOUT =
−1

CINT

∫
IIN(t) dt (15)

The input range is ±100µA and the output range is ±10
V. Based on equation 15, an input of 10 µA would saturate the
output within 100 microseconds. Because typical pulse widths
for the neuroscience application are on the order of 0.013 to
1.12 ms, the input range is more than sufficient to saturate the
output. As such, the output range is the limiting variable in
choosing α and βi.

Specifically, the scaling factor α is chosen to avoid IVC102
output saturation while maximally utilizing the dynamic range
of the integrator output relative to integrator noise. The scaling
factors βi are chosen to scale the integrator output to match the
ADC input range. These values are computed separately for
gAT-1 and gAT-2.

First, the α is chosen based on square wave inputs located
at the beginning of the analysis interval, resulting in the largest
integrals. These square wave inputs vary from 0 to 1, as de-
picted in Figure 1. This selection disregards the effects of in-
tegrator noise. Next, the βi are chosen so that the ADC input
range covers the 95 percent confidence interval of possible sam-
ples, accounting for integrator noise. We have not included the
α and βi values because there are several chosen values per fig-
ure depending on interval length (affecting α and βi) and noise
level (affecting βi). The ADC quantization levels are evenly
spaced throughout this interval.

Table 1. Integration Noise and Sampling Parameters Explored
in Figures 3, 4 and 5.

Figure σ (mV) ADC Res. (Bits) Samp. Period (ms)
3 0 – 10 16 100
4 0, 0.1, 10 1 – 16 100
5 0, 0.1, 10 16 0 – 100

Table 1 lists the integrator noise standard deviation (σ) in
mV (reported in the IVC102 data sheet [9] as standard deviation
of the output after integrating zero input for 1 second), the ADC
resolution in bits, and the length of the sampling period in ms.

3. RESULTS

First, we assessed performance versus integrator noise for a
high resolution (16-bit) ADC (Figure 3) and 100 ms sampling
interval. Errors grow with integrator noise for both methods as
the noise level increases, but much more rapidly for gAT-2 ver-
sus gAT-1. This is likely because gAT-2 depends on higher or-
der integrals that accumulate larger variability than lower order
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integrals in the presence of integrator noise. The gAT-2 perfor-
mance degredation asymptotes because pulse time and width
reconstruction errors are limited by the values represented by
thwavee ADC and the length of the sampling interval.
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Fig. 3. Using a high-resolution ADC (16 bit), signal reconstruc-
tion quality as a function of the integrator noise level σ. Sam-
pling interval is 100 ms. Typical simulated spike widths vary
between 0.013 ms and 1.12 ms. Confidence intervals (95%) are
based on 100 bootstrapped averages from 10,000 samples.

We then determined performance versus ADC bit resolu-
tion at three levels of integrator noise (Figure 4) for a 100 ms
sampling interval, based on the IVC102 integrator [9]. Solid
curves for each method represent performance at two differ-
ent levels of integrator noise (σ in equation 5), 0.1 mV and
10 mV. Dotted curves represent performance at zero integrator
noise. Note that all three gAT-1 (blue) curves overlap in this
figure. As the number of bits used by the ADC increases, the
error decreases because the values received from the ADC be-
come more accurate. In general, gAT-2 has larger errors than
gAT-1, suggesting its reconstruction process is more sensitive
to errors in the samples. The greatest benefit in ADC resolution
is achieved within 8 bits. For gAT-2 curves, unusual behavior
is seen at resolution below 3 bits, which likely relates to the
relationship between reconstruction errors and the specific con-
ditions of our performance testing.
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Fig. 4. Signal reconstruction quality as a function of the ADC
resolution in bits, in the presence of integrator noise and quan-
tization error. The solid lines show the expected error for a low
level of integrator noise (σ = 0.1 mV) and a high level of inte-
grator noise (σ = 10 mV) based on the IVC102 [9]. The dashed
lines show performance with no integrator noise, σ = 0 mV. For
gAT-1, the various lines overlap. Confidence intervals (95%)
are based on 100 bootstrapped averages from 10,000 samples.

Finally, we examined performance versus sampling inter-
val (Figure 5) at varying levels of integrator noise using a 16-bit
ADC. As the sampling interval increases in duration, the error
in reconstructed time increases, due to accumulated integrator

noise. Paradoxically, the reconstructed width error decreases
with increasing sampling interval. The reason for this is not
immediately clear.

For practical applications, an additional source of perfor-
mance degredation relates to the probability of exceeding the
assumed maximum number of pulses within an interval. For ex-
ample, neuron spiking rates vary between 1 and 300 action po-
tentials per second depending on species, brain region, sensory
stimulation, and other conditions [14]. Accordingly, specific
choices of sampling interval might work well in some brain re-
gions and not others. This source of error is not represented in
Figure (5).
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Fig. 5. Signal reconstruction quality versus length of the sam-
pling interval, using a 16-bit ADC at various levels of integra-
tion noise. The solid lines show the expected error for low (σ
= 0.1 mV) and high (σ = 10 mV) integrator noise. The dashed
lines show performance without integration noise. For gAT-1,
the lines overlap. Confidence intervals (95%) are based on 100
bootstrapped averages from 10,000 samples.

4. CONCLUSION

Our simulated analysis examines the feasibility of gAT, a class
of FRI-based sampling and reconstruction methods for square-
wave signals, under the hardware-induced non-idealities of
integrator noise and quantization error. Under ideal conditions,
FRI-based gAT methods are capable of reconstructing signals
precisely. By simulating these hardware non-idealities, we
show that gAT-1 reconstruction could be robust to these hard-
ware non-idealities, where gAT-2 reconstruction is expected
to be significantly more brittle in terms of reliably estimating
pulse time and width. The brittle performance of gAT-2 is
likely in part because gAT-2 reconstruction method requires
higher order integrals that accumulate noise from lower-order
integration stages. Based on these results, gAT-1 appears to be
the preferred candidate over gAT-2 for initial efforts to develop
FRI sampling hardware for square-wave signals.
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