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ABSTRACT
A typical finite-rate-of-innovation (FRI) signal reconstruction
scheme is based on the measurement of uniform samples in
time/frequency domain, and the application of the annihilat-
ing filter on the measured samples. We propose a continuous-
time annihilation framework for a class of FRI signals. In
particular, we show that FRI signals of sum-of-weighted ex-
ponential form can be annihilated by a composition of trans-
lation operators and show that the parameters of the signal
can be estimated in the periodic non-uniform sampling (PNU)
scenario. We discuss the advantages of PNU sampling over
uniform sampling and extend it for general FRI signal sam-
pling and reconstruction. Simulations are performed and the
results are compared with state-of-the-art methods for signal-
to-noise ratios ranging from−20 to 100 dB. An improvement
in the estimation accuracy of 15–55 dB in terms of bias and
mean-square error is achieved over conventional methods by
a rearrangement of uniform samples to follow PNU sampling.

Index Terms— Finite rate of innovation, periodic non-
uniform sampling, continuous-time annihilation, annihilating
filter.

1. INTRODUCTION

In the past decade, extensive research has gone into sampling
and reconstruction of structured signals that are not necessar-
ily bandlimited. The structure could be the sparsity of the sig-
nal in certain bases representation, parametric representation
of the signal or a multiband structure. Such signals have finite
degrees of freedom (DOF) and hence can be reconstructed
from a finite number of measurements.

Vetterli et al. [1] introduced the notion of finite-rate-of-
innovation (FRI) sampling and showed that certain signals
can be specified by a finite number of free parameters per
unit time interval. They considered signals such as a stream
of Dirac impulses, piecewise polynomials, a stream of dif-
ferential Dirac pulses, non-uniform splines, etc. In a typi-
cal FRI framework, one estimates the parameters of the sig-
nal by designing a suitable sampling kernel that converts the
sampled sequence to a power-sum sequence [2]. The param-
eters of the FRI signal are estimated from the samples by

applying high-resolution spectral estimation techniques such
as the annihilating filter (AF) [3], multiple signal classifica-
tion (MUSIC) algorithm [4], estimation of signal parameters
via rotational invariance technique (ESPRIT) [5], minimum-
norm method [6], and their numerous variants [7, 8]. Vet-
terli et al. proposed infinite duration Gaussian and sinc sam-
pling kernels in conjunction with the AF method for signal
reconstruction. To have practically realizable sampling ker-
nels, Dragotti et al. [9] proposed a class of functions that
includes polynomial reproducing kernels, exponential repro-
ducing kernels, and kernels with rational transfer functions.
Tur et al. extended the class of FRI signals to include sig-
nals of the form of sum-of-weighted and time-shifted (SWTS)
copies of a known pulse [10]. They proposed a finite dura-
tion kernel with repetitions and sum-of-sincs (SoS) frequency
response, and demonstrated application to reconstruction of
ultrasound signals in the FRI framework. Recently, Mulleti et
al. [11] showed that SWTS-FRI signals can be sampled using
SoS sampling kernels without repetitions. Bernet et al. [12]
extended FRI reconstruction framework for piecewise sinu-
soids with polynomials and without polynomials. Matusiak
and Eldar [13] addressed the sampling and reconstruction of
SWTS-FRI signal with unknown pulse shapes. Uriguen et
al. [14] proposed an FRI signal sampling strategy using ar-
bitrary sampling kernels. Multichannel sampling strategies
for a stream of Dirac impulses were proposed by Seelaman-
tula and Unser [15], and Olkkonen and Olkkonen [16] us-
ing causal exponential sampling kernels. These methods do
not require the AF for reconstruction and give a closed-form
expression for the estimated parameters. Alternative multi-
channel FRI sampling methods were reported by Gedalyahu
et al. [17], Kusuma and Goyal [18], and Asl et al. [19]. In
particular, Asl et al. considered the multicahannel framework
with unknown delays and gains in each channel, and show
the reconstruction of FRI signals and estimation of delays and
gains in each channel by using kernels with polynomial repro-
ducing property. Most of the FRI sampling methods rely on
uniform sampling of filtered FRI signals. Sun [20] and Wei
et al. [21] proposed non-uniform sampling methods for FRI
signals.
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Another class of structured signals with finite DOF con-
sists of signals with sparse representation in a known bases.
Sampling and reconstruction methods for such signals are de-
veloped within the framework of compressive sensing [22–
26]. Multiband signals constitute a class of structured signals
with effective bandwidth (cumulative spectral support) much
lesser than the maximum frequency component. A periodic
non-uniform sampling scheme called multi-coset sampling
was proposed by Venkataramani and Bresler [27] for sam-
pling multiband signals at sub-Nyquist rates. Mishali and El-
dar [28] proposed a compressive sensing framework to sam-
ple and reconstruct multiband signals.

1.1. Our contribution

We consider the problem of sampling and reconstruction of
FRI signals of sum-of-weighted exponentials (SWE) form
given by

f(t) =

L∑
`=1

a` e
α` t, (1)

where all a`, α` ∈ C. The goal is to estimate the parameters
{a`, α`}L`=1 from f(t). We develop a continuous-time annihi-
lation method for the FRI signal by applying shift/translation
operators and show that the parameters of SWE-FRI signals
can be estimated by more generalized periodic non-uniform
(PNU) sampling as opposed to conventional uniform sam-
pling. We extend the PNU sampling framework to the re-
construction of generalized FRI signals that consist of a sum-
of-weighted and time-shifted pulses. Simulations are per-
formed for various noise levels and bias and mean-square er-
ror (MSE) are computed and the MSE is compared with the
Cramér-Rao lower bound (CRLB).

2. THE KEY IDEA

2.1. Annihilation of FRI signals on a PNU sampling grid

Consider a single exponential signal x(t) = eα t, where α ∈
C, and the shifted version ST {x}(t)

∆
= x(t−T ) = eα (t−T ) =

e−αT x(t). Clearly, (I − eαTST ){x}(t) = 0,∀t ∈ R. Thus,
the operator (I − eαTST ) is an annihilator of the exponential
x(t) = eα t. Given a function x(t) with an unknown param-
eter α, with the goal of estimating α, we could construct an
operator (I−eβ TST ) and determine the value of β for which
(I − eβ TST ){x}(t) = 0. This value is unique and is given
by β = α.

Since the shift operator is linear, it is straightforward to

verify that the SWE function f(t) =

L∑
`=1

a` e
α` t, is annihi-

lated for all time by the operator M ∆
=

L∏
`=1

(I − eα` TST )︸ ︷︷ ︸
M`

.

The operatorM can be expressed in additive form asM =

. . . . . . . . . . . .
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. . .

T
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Fig. 1. Illustration of interleaved sampling grids. The non-
uniform grid in the top most plot is actually comprised of var-
ious uniform sampling grids as shown.

L∑
`=0

γ` S`T , where γ0 = 1, and S`T is the `-times dilated

version of the translation operator ST and γ`s are dependent
on the quantum of shift T and the exponential parameters
{α`}L`=1.

Since f(t) =
L∑
`=1

a` e
α` t is an FRI signal with the free-

variables {a`, α`}L`=1, reconstruction of f(t) is equivalent to
estimating the free variables. To address the question of esti-
mating the parameters a`s and α`s, we start with the annihi-
lation equation using the operatorM, which yields

L∑
`=0

γ` f(t− ` T ) = 0, ∀t, (2)

and setup a system of equations

L∑
`=0

γ` f(tk − ` T ) = 0, k = 1, 2, 3, · · · ,M, (3)

corresponding to a set of random sampling instants tks, and
γ0 = 1 with M ≥ L. In (3), starting at each randomly cho-
sen initial grid time instant tk, a uniform sampling scheme
with sampling interval T is applied to measure L samples at
tk − ` T , ` = 0, 1, 2, · · · , L. With this sampling strategy, the
sampling indices given by tk − `T for k = 1, 2, 3, · · · ,M
and ` = 0, 1, 2, · · · , L constitute a periodic non-uniform
sampling grid as shown in Fig. 1.

The corresponding matrix equation for annihilation is
given by (4) where a minimum of L(L + 1) measurements
of f are required for annihilation with M = L. The vector
γ can be estimated from (4) as the null-space vector of the
matrixMf with the condition γ0 = 1. The roots of the poly-
nomial with the coefficients {γ`}L`=0 are given as

{
eα`T

}L
`=1

,
from which α` can be computed (T is known). Once α`s are
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f(t1) f(t1 − T ) · · · f(t1 − LT )
f(t2) f(t2 − T ) · · · f(t2 − LT )
f(t3) f(t3 − T ) · · · f(t3 − LT )

...
...

. . .
...

f(tM ) f(tM − T ) · · · f(tM − LT )


︸ ︷︷ ︸

Mf


γ0
γ1
γ2
...
γL


︸ ︷︷ ︸

γ

=


0
0
0
...
0


︸ ︷︷ ︸

0

,

(4)

estimated, the amplitudes a`s can be estimated from mea-
surements of the signal f(t) by least-squares (LS) regression.

It can be shown that the matrixMf in (4) has rank L for
randomly chosen tks and M ≥ L. Hence, the estimated vec-
tor γ is unique up to a scaling factor, and parameters α`s can
be determined uniquely from PNU sampling of FRI signals
f(t). In the presence of noise, the matrix Mf has full col-
umn rank and γ is estimated as a solution to the optimization
problem: minimize

γ
‖Mfγ‖2 such that ‖γ‖2 = 1. Larger the

number of rows M in (4), more the number of samples used
for estimation of γ; consequently, the parameter estimation
accuracy is increased in the presence of noise.

2.2. PNU sampling of generalized FRI signals

In the preceding analysis, the PNU sampling and recon-
struction method has been derived for SWE-FRI signals.
In this section, we show that the sampling method can be
extended to a larger class of FRI signals. Consider SWTS-

FRI signal g(t) =

L∑
`=1

a` h(t − τ`), where a`s and τ`s

are unknown parameters to be estimated by assuming that
the pulse h(t) is known. The Fourier transform of g(t) is

ĝ(ω) = ĥ(ω)

L∑
`=1

a` e
−jω τ` , where ĥ(ω) is the frequency

spectrum of the pulse h(t). A typical reconstruction method
for SWTS-FRI signals consists of estimating uniform sam-
ples of x̂(ω) = ĝ(ω)

ĥ(ω)
, by assuming that ĥ(ω) is non-zero at

those sample locations, and then applying the AF method and
LS method to estimate the parameters. The function x̂(ω)
is an FRI signal of the SWE form and instead of sampling
it uniformly, one can apply the proposed PNU sampling and
perform annihilation to estimate its parameters.

2.3. Advantages of PNU sampling over uniform sampling

The SWE signal reconstruction from uniform samples re-
quires a minimum of 2L contiguous samples, whereas with
PNU sampling, one requires a minimum of L(L + 1) sam-
ples with L + 1 contiguous samples at each grid. The main
advantage with interleaved sampling is that the set of L + 1
contiguous samples can be measured from different segments
of the SWE-FRI signal. In the presence of noise, based on
the distribution of noise over time/frequency, segments with

higher signal-to-noise ratio (SNR) can be used to measure the
samples. In contrast, for the uniform sampling scheme, it is
not feasible to obtain samples from different segments of the
signal due to the requirement of contiguous sample locations.

The advantage of taking measurements from high-SNR
segments is more relevant in sampling and reconstruction of
SWTS pulses from their Fourier transform measurements. In
the presence of noise, the division operation in computing
x̂(ω) = ĝ(ω)

ĥ(ω)
, which is effectively a deconvolution operation,

enhances the effect of noise in the frequency band for which
the magnitude of ĥ(ω) is close to zero. By using the PNU
sampling grid, we have the freedom to measure L + 1 sam-
ples from the frequency bands where |ĥ(ω)| is significant.
Moreover, in the presence of colored noise, the samples can
be measured from frequency bands with low noise floors.

The proposed continuous-time annihilation-based sam-
pling and reconstruction methods require non-uniform sam-
ples, whereas most practical systems employ uniform sam-
pling. The PNU sampling method can be easily extended to
systems where uniform samples are available without alter-
ing the sampling mechanism. Suppose we are given uniform
samples (with sampling interval Ts) of an SWE-FRI signal,
we can construct (4) by choosing tks randomly from integer
multiples of Ts and selecting the delay T to be an integer
multiple of Ts. Hence, a rearrangement of uniform samples
will result in PNU sampling and reconstruction.

3. SIMULATION RESULTS

We consider an FRI signal of the form shown in (1) with
L = 3, amplitudes [a1, a2, a3] = [2.0, 1.5, 1.0] and exponents
[α1, α2, α3] = j[0.20, 0.37, 0.65], respectively. We measured
N = 128 uniform samples of the signal with the sampling
interval Ts = 1. The samples are contaminated by indepen-
dent and identically distributed additive white Gaussian noise
(AWGN) with zero mean and variance σ2. To estimate the
parameters {α`, a`}L`=1 of the FRI signal, the following meth-
ods are applied: (1) AF method, (2) AF method with Cadzow
denoising [29], which is denoted as Cadzow-AF, (3) ESPRIT,
(4) proposed PNU sampling based method, and (5) proposed
method with Cadzow denoising on uniform samples, denoted
as Cadzow-PNU. The estimation performances of these meth-
ods are compared in terms of average bias and average MSE
computed over 1000 independent realizations for each noise
levels. The SNR is varied from −20 dB to 100 dB in steps of
5 dB. In PNU sampling, tks are selected randomly over [1, N ]
for M = 25 with a delay T = 8. The CRLB in estimation
of α` (given by Variance(α`) = 6σ2

N3a2`
[7]) is calculated and

MSEs in estimation of α` are compared against it. The plots
in the first columns of Fig. 2 and Fig. 3 show the squared bias
in the estimation of α`s and a`s, respectively. The squared
bias in estimation of α`s is lesser by 20–50 dB with PNU sam-
pling method as compared with uniform sampling following

5944



20 0 20 40 60 80 100250

200

150

100

50

0

SNR [dB]

BI
AS

2  [d
B]

1

 

 

AF
CADZOW AF
PNU
CADZOW PNU
ESPRIT

20 0 20 40 60 80 100200

150

100

50

0

SNR [dB]

M
S
E

[d
B

]

1

 

 

AF
CADZOW AF
PNU
CADZOW PNU
ESPRIT
CRLB

20 0 20 40 60 80 100250

200

150

100

50

0

SNR [dB]

BI
AS

2  [d
B]

2

 

 

AF
CADZOW AF
PNU
CADZOW PNU
ESPRIT

20 0 20 40 60 80 100200

150

100

50

0

SNR [dB]

M
S
E

[d
B

]

2

 

 

AF
CADZOW AF
PNU
CADZOW PNU
ESPRIT
CRLB

20 0 20 40 60 80 100250

200

150

100

50

0

SNR [dB]

BI
AS

2  [d
B]

3

 

 

AF
CADZOW AF
PNU
CADZOW PNU
ESPRIT

20 0 20 40 60 80 100200

150

100

50

0

SNR [dB]

M
S
E

[d
B

]

3

 

 

AF
CADZOW AF
PNU
CADZOW PNU
ESPRIT
CRLB

Fig. 2. Performance comparison in the estimation of α`s for
N=128 uniform samples. The parameters of the FRI signal
are L = 3, [α1, α2, α3] = j[0.20, 0.37, 0.65] and [a1, a2, a3] =
[2.0, 1.5, 1.0]. In the PNU sampling scheme, T=8 andM=25.

by AF method for the SNR range of −20 to 100 dB, whereas
the improvement in bias performance in estimation of a`s is
5–50 dB for SNR ≥ 0 dB. After applying the Cadzow de-
noising method, the error due to bias with AF based method
is reduced by 5–50 dB over the SNR range−20 to 100 dB for
both α`s and a`s; however, it has not changed significantly
in PNU sampling method whose performance with Cadzow
denoising is very similar to that of ESPRIT method.

The second column of Fig. 2 shows that the MSE error
in estimation of α`s is lesser by 20–55 dB with the proposed
method as compared with the AF based method, as SNR is
increased from −20 to 100 dB. Hence, by rearrangement of
uniform samples (cf. (4)) one can improve the estimation per-
formance significantly. With the proposed method, the MSE
is lesser by 7 dB compared with CRLB for SNR ≥ 0 dB.
An improvement of 5–45 dB in MSE is noted in estimation
of a`s for positive SNRs. By applying Cadzow denoising, the
MSE in the estimation of α` by AF method is decreased by 50
dB, whereas the MSE improvement in the proposed method
with denoising is 7 dB for SNR≥0 dB. For SNR lesser than
0 dB, the PNU and Cadzow-PNU methods perform better in
terms of MSE compared to Cadzow-AF and ESPRIT meth-
ods, whereas, for high SNR, the performance of the methods
with Cadzow denoising and performance of ESPRIT method
is closer to the CRLB. As the SNR goes beyond 80 dB, the
improvement due to denoising ceases and the methods per-
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Fig. 3. Performance comparison in the estimation of a`s for
N=128 uniform samples. The parameters of the FRI signal
are L = 3, [α1, α2, α3] = j[0.20, 0.37, 0.65] and [a1, a2, a3] =
[2.0, 1.5, 1.0]. In the PNU sampling scheme, T=8 andM=25.

form similarly to their counterparts without denoising. In the
second column of Fig. 3, an improvement of 5–45 dB in MSE
in the estimation of a`s is observed with PNU sampling as
compared to AF method for SNR ≥ 0 dB. With Cadzow de-
noising, the performance of AF based method is increased by
5–45 dB, whereas the MSE is improved by 7 dB with the pro-
posed method for positive SNRs.

4. CONCLUSIONS

We proposed a continuous-time, shift-based annihilation ap-
proach with PNU sampling for reconstruction of a class of
FRI signals. The proposed method is more generic than uni-
form sampling method in terms of selecting samples from
different segments of a signal. We showed that the PNU
sampling method can also be extended to uniform samples
by rearranging them. Simulation results show a significant
improvement in the estimation performance by applying the
proposed method as compared with the conventional uniform
sampling based AF (with or without Cadzow denoising) and
ESPRIT with a simple adaptation to PNU sampling. The en-
hancement in performance is due to the delay factor T , which
improves the resolution in exponent estimation. We are work-
ing towards deriving the performance bounds in parameter es-
timation as a function of T and noise statistics, and applica-
tions to real data.
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