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ABSTRACT 

For hearing aid (HA) devices, speech enhancement (SE) is an 

essential unit aiming to improve signal-to-noise ratio (SNR) 

and quality of speech signals. Previous studies, however, 

indicated that user experience with current HAs was not fully 

satisfactory in noisy environments, suggesting that there is 

still room for improvement of SE in HA devices. This study 

proposes a novel discriminative post-filter (DPF) approach to 

further enhance the SNR and quality of SE processed speech 

signals. The DPF uses a filter to increase the energy contrast 

(discrimination) of speech and noise segments in a noisy 

utterance. In this way, SNR and sound quality of speech 

signals can be improved, and annoying musical noises can be 

suppressed. To verify the effectiveness of DPF, the present 

study integrates DPF with a previously proposed generalized 

maximum a posteriori spectral amplitude estimation 

(GMAPA) SE method. Experimental results demonstrated 

that when comparing to GMAPA alone, this integration can 

further improve output SNR and perceptual evaluation of 

speech quality (PESQ) scores and effectively suppress 

musical noises across various noisy conditions. Due to its 

low-complexity, low-latency, and high-performance, DPF 

can be suitably integrated in HA devices, where 

computational efficiency, power consumption, and 

effectiveness are major considerations. 
 

Index Terms— hearing aid, speech enhancement, discriminative 

post-filter (DFP), GMAPA algorithm, spectral restoration 

1. INTRODUCTION 

Sensorineural hearing loss (SNHL) is a common type of 

hearing loss in clinical, and hearing aid (HA) is the most 

popular method to help SNHL individuals improve their 

communication ability [1,2]. In an HA device, speech 

enhancement (SE) is an essential unit, which aims to improve 

signal-to-noise ratio (SNR) and sound quality of speech 

signals. However, previous studies indicated that degraded 

speech quality caused by noise remains a key issue to HA, 

even when the SE approach is used [3, 4]. This issue directly 

affects the satisfaction of HA users and suggests that there is 

still room for improvement of SE in HA devices.  

SE approaches can be roughly divided into two classes: 

supervised and unsupervised approaches. Supervised SE 

approaches prepare an acoustic structure using the prior 

information of noise type, signal-to-noise ratio (SNR), and/or 

speaker identity, to facilitate the online enhancement process. 

Nonnegative matrix factorization (NMF) [5], sparse coding 

[6], deep autoencoder [7] [8], and deep neural network [9] 

are successful supervised approaches. Although the 

supervised algorithms can provide satisfactory noise 

reduction performance, suitable prior information is required 

to achieve the optimal performance. Such information is 

usually inaccessible beforehand. 

On the other hand, unsupervised SE approaches are 

more favorable for the tasks where the prior information 

about the acoustic condition is not available. Among the 

unsupervised SE approaches, spectral restoration is a notable 

class. Spectral restoration estimates a gain function for 

performing noise reductions in the spectral domain in order 

to obtain clean speech spectra from noisy speech spectra. 

Well-known spectral restoration approaches include 

minimum mean-square error (MMSE) spectral estimator [10], 

maximum a posteriori spectral amplitude (MAPA) estimator 

[11, 12], and maximum likelihood spectral amplitude 

(MLSA) estimator [13]. More recently, a generalized 

maximum a posteriori spectral amplitude estimation 

(GMAPA) algorithm was proposed for spectral restoration 

[14, 15]. The GMAPA algorithm optimally specifies the prior 

information scale according to the SNR of degraded speech 

to calculate the gain function and has been confirmed to 

perform well in both high and low SNR conditions. Previous 

studies also shown that the GMAPA algorithm provides 

efficacious noise reduction performance while causing small 

distortions when compared to other related SE methods (i.e., 

MMSE, MAPA, and MLSA) [14]. Meanwhile, it has been 

shown that the GMAPA algorithm provides significant 

benefits when integrated in an wide-dynamic range 

compression (WDRC) or adaptive WDRC [16] amplification 

scheme of HA device [15, 17].  

Although SE approaches can effectively improve the 

SNR of input speech signals, another issue remains unsolved: 

musical tones appear during silence segments [18]. The 

annoying musical noises seriously degrade the satisfaction of 

HA users. This study proposes a discriminative post-filter 

(DPF), which is placed after an SE process to further improve 

SNR and sound quality of enhanced speech signals. The 

proposed DPF approach devices a non-linear function, which 

specifies a smaller gain for soft sounds (i.e., noise segments) 

and a larger gain for loud sounds (i.e., speech segments). 

Because an SE process can already provide improved SNR, 

the DPF approach can further enhance the energy contrast 

(discrimination) of speech and noise segments in a noisy 

utterance. A larger energy contrast (discrimination) of speech 

and noise segments correspond to the processed speech 

signals with higher output SNR and better sound quality. 

Moreover, by suppressing low SNR segments, the annoying 

musical noises can be suppressed effectively. We evaluated 

the proposed DPF approach with objective evaluations using 

PESQ [19] and long-term SNR [20]. Evaluation results 
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confirm that the DPF approach can be suitably integrated 

with the GMAPA algorithm to further enhance output SNR 

and sound quality.  

2. RELATED WORKS 

This section reviews the spectral restoration framework and 

the GMAPA algorithm for speech enhancement. 

2.1. Spectral restoration framework 

In the time domain, a noisy speech signal, 𝑦[𝑛], is the sum 

of a clean speech, 𝑠[𝑛], and a noise signal,
 
𝑣[𝑛]: 

𝑦[𝑛] = 𝑠[𝑛] + 𝑣[𝑛],
 

(1)  

where n denotes the time index. In the frequency domain, the 

noisy speech spectrum of the m-th frame, 𝑌[𝑚, 𝑙], can be 

expressed as 

𝑌[𝑚, 𝑙] = 𝑆[𝑚, 𝑙] + 𝑉[𝑚, 𝑙],  

where 1 ≤ 𝑚 ≤ 𝑀;  0 ≤ 𝑙 ≤ 𝐿 − 1,
 

(2) 

where l is the frequency bin for 𝜔𝑙 , where 𝜔𝑙 = 2π𝑙/𝐿 ; 

𝑆[𝑚, 𝑙] and 𝑉[𝑚, 𝑙]  are the speech and noise spectra, 

respectively; L and M are the number of frequency bins and 

frames, respectively. 

Figure 1 shows the spectral restoration process, which 

can be divided into noise tracking and gain estimation stages. 

The noise tracking stage computes noise power from the 

noisy speech, 𝑌[𝑚, 𝑙] , to obtain a priori SNR 𝜉𝑘  and a 

posteriori SNR 𝛾𝑘, which are defined as 𝜉𝑘 = 𝜎𝑠
2 𝜎𝑣

2⁄  and 

𝛾𝑘 = 𝑌𝑘
2 𝜎𝑣

2⁄ , where 𝜎𝑠
2 = 𝐸[|𝑆|2]  and 𝜎𝑣

2 = 𝐸[|𝑉|2]; the 

subscript k denotes the amplitude part of a signal. In the 

following, 𝜉𝑘 and 𝛾𝑘 are denoted as 𝜉 and 𝛾, respectively, 

for simplicity. Then, the gain estimation stage calculates a 

gain function, 𝐺[𝑚, 𝑙], based on a priori and a posteriori 

SNR statistics, to obtain enhanced speech, �̂�[𝑚, 𝑙] , by 

filtering 𝑌[𝑚, 𝑙]  through 𝐺[𝑚, 𝑙] . In the following, we 

denote 𝑌[𝑚, 𝑙], 𝑆[𝑚, 𝑙], 𝑉[𝑚, 𝑙], and 𝐺[𝑚, 𝑙], respectively, 

as 𝑌, 𝑆, 𝑉, and 𝐺, for simplicity. Finally, after the IFFT 

process, we then obtain the enhanced speech, �̂�[n]. 
 

 

  
 

 

Figure 1: Block diagram of a spectral restoration system. 
 

By decomposing noisy and clean speech specta, 𝑌 and 

𝑆 in (2), into amplitude and phase parts, we have 

𝑌 = 𝑌𝑘𝑒𝑥𝑝(𝑗𝜃𝑌) ,
 

(3) 

𝑆 = 𝑆𝑘𝑒𝑥𝑝(𝑗𝜃𝑆) , (4) 

where 𝑌𝑘 = |𝑌| , 𝑆𝑘 = |𝑆| , 𝜃𝑌 = ∠𝑌 , and 𝜃𝑆 = ∠𝑆 . To 

restore 𝑆  from 𝑌 , we first estimate the phase of clean 

speech spectrum by [10]: 

𝑒𝑥𝑝(𝑗𝜃𝑆) = 𝑒𝑥𝑝(𝑗𝜃𝑌).
 

(5) 

Full details about the phase estimation can be found in [10]. 

Accordingly, the clean speech spectrum is estimated as 

�̂� = �̂�𝑘𝑒𝑥𝑝(𝑗𝜃𝑌),
 

(6) 

where �̂�𝑘 is the enhanced speech amplitude.  

2.2. The GMAPA algorithm 

Recently, the GMAPA spectral restoration algorithm [14] has 

been proposed to estimate the spectral amplitude, �̂�𝑘 by: 

�̂�𝑘 = arg max
𝑆𝑘

 𝐽𝐺𝑀𝐴𝑃𝐴(𝑆𝑘), (7) 

where  𝐽𝐺𝑀𝐴𝑃𝐴(𝑆𝑘) is the GMAPA cost function: 

 𝐽𝐺𝑀𝐴𝑃𝐴(𝑆𝑘) = ln{𝑝[𝑌|𝑆𝑘] (𝑝[𝑆𝑘])𝛼}, (8) 

where 𝛼 is the prior information scalar, which is optimally 

determined according to the SNR of the testing condition. A 

sigmoid function was used to optimally determine the scale 

of α for 𝐺𝐺𝑀𝐴𝑃𝐴 in Eq. (8) for each utterance according to 

𝛼 =
𝛼𝑚𝑎𝑥

1 + 𝑒𝑥𝑝[−𝑏(�̅�  − 𝑐)]
 , (9) 

where αmax is the maximum value (upper bound) for α, b and 

c are coefficients of the sigmoid function, and �̅� is the mean 

of the a posteriori SNR for a given utterance; �̅� =

1 𝑇⁄ ∑ 𝛾(𝑡)𝑇
𝑡=1 , where T is the total number of frames for this 

utterance, and 𝛾(𝑡)is the mean a posteriori SNR for the t-th 

frame. In our previous study, the parameter set {αmax, b, c} is 

determined by a set of training data from Aurora-4 [21], and 

the method to determine {αmax, b, c} is based on a quality 

objective metric: speech distortion index (SDI) [14]. 

After some derivations, the GMAPA-based gain 

function, 𝐺𝐺𝑀𝐴𝑃𝐴, can be expressed as  

𝐺𝐺𝑀𝐴𝑃𝐴 =
𝜉 + √𝜉2 + (2𝛼 − 1)(𝛼 + 𝜉)𝜉 𝛾⁄

2(𝛼 + 𝜉)
.   (10) 

Finally, the estimated clean speech spectrum for the GMAPA 

estimator can be written as 

     �̂� = �̂�𝑘 ∙ 𝑒𝑥𝑝(𝑗𝜃𝑌𝑘
) 

= 𝐺𝐺𝑀𝐴𝑃𝐴 ∙ 𝑌.
 

(11) 

3. DISCRIMINATIVE POST-FILTER (DPF)  

This section presents the proposed DPF algorithm and 

introduces the integration of DPF and GMAPA, termed 

GMAPA+DPF in this study. 
 

3.1. The proposed DPF algorithm 

Figure 2 shows an input/output (I/O) function of DPF in the 

dB sound pressure level (SPL) domain. The area below the 

knee point (T) corresponds to the expansion area; an 

expansion ratio (ER) is applied to the input signals. 

Meanwhile, the area above the knee point (T) corresponds to 

the linear area; a fixed gain (or zero gain) is applied to the 

input signals. More specifically, in the linear area, when the 

input signal is changed by 5 dB, the output signal is also 

changed by 5 dB. In the expansion area, when the input signal 

is changed by 5 dB, the output signal is changed by 10 dB. If 

the knee point is set properly (i.e., exactly separating the 

levels of speech and noise segments), DPF will effectively 

increase the energy contrasts. Furthermore, because the 

linear amplification is used when the level of input signals is 

FFT
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higher than the knee point, less speech distortions will be 

incurred by DPF. The DPF algorithm designs the filter, 𝐹(∙), 

by:  

       �̂�′[𝑚, 𝑙] = 𝐹(�̂�[𝑚, 𝑙]) 

            

=
∑ ∑ (�̂�[𝑚, 𝑙]𝐿

𝑙=1 )𝑀
𝑚=1

∑ ∑ (𝜌[𝑚, 𝑙](𝑐)�̂�[𝑚, 𝑙]𝐿
𝑙=1 )𝑀

𝑚=1

𝜌[𝑚, 𝑙](𝑐)�̂�[𝑚, 𝑙] , 

(12) 

 

where �̂�[𝑚, 𝑙] is the SE enhanced speech signal from Eq. (6); 

�̂�′[𝑚, 𝑙] is the output speech signals processed by SE and 

DPF; the denominator term in Eq. (12) normalizes the output 

speech signals to the same power level as that of �̂�[𝑚, 𝑙]; 
𝜌[𝑚, 𝑙](𝑐)is the poster filter coefficient, which is estimated by 
 

𝜌[𝑚, 𝑙](𝑐)    

= {
1                                                         ,         𝑖𝑓 𝑝𝑚

(𝑐)
> 𝑇(𝑐)

10{[(1−𝐸𝑅)×(𝑇(𝑐)−𝑝𝑚
(𝑐)

)] 20⁄ }          , 𝑖𝑓 0 <  𝑝𝑚
(𝑐)

< 𝑇(𝑐)
 

 

          for  𝑙 ∈ {𝑓𝐿
(𝑐)

, 𝑓𝐻
(𝑐)

}                               

(13) 

where 𝑓𝐿
(𝑐)

 and 𝑓𝐻
(𝑐)

 denote the lower- and higher- bounds, 

respectively, of the c-th frequency channel (each frequency 

channel covers a band of frequency bins); 𝑝𝑚
(𝑐)

 denotes the 

level of input signals (in dB SPL) assigned to the m-th frame; 

𝑇(𝑐) is the knee point of expansion of c-th frequency channel; 

the parameter ER represents the expansion ratio. Based on 

the poster filter coefficient in Eq. (13), the I/O function of 

DPF in dB SPL domain becomes Figure 2.  

 
 

 

Figure 2: The I/O function of DPF; the area below the knee 

point (T) stands for the expansion area (ER=2), and the area 

above the knee point (T) stands for the linear gain area.  
 

3.2. The integration of GMAPA and DPF 

This study integrates the DPF approach with the GMAPA 

algorithm by following the procedure demonstrated in Figure 

3. Comparing to the original spectral restoration system 

presented in Figure 1, the DPF approach is placed after the 

GMAPA spectral restoration process. From Eqs. (11) and 

(12), the final output spectra of GMAPA+DPF becomes:  

�̂�′[𝑚, 𝑙] = 𝐹(𝐺[𝑚, 𝑙] ∙ 𝑌[𝑚, 𝑙]),
 

(14) 

where 𝐹(∙) is the filter function defined in Eqs. (12) and 

(13). Finally, by performing IFFT on �̂�′[𝑚, 𝑙], we can obtain 

the enhanced speech, �̂�′[n].  
 

   
 

 

Figure 3: The proposed GMAPA+DPF framework. 
 

4. EXPERIMENT 

This section presents the experimental setup and results of 

the proposed GMAPA+DPF approach. 

4.1. Test signals 

The Mandarin sentences chosen from Mandarin hearing in 

noise test (MHINT) database [22] were used to prepare the 

testing speech sentences, denoted as “S”. The pink noise 

were used and denoted as “N” in this study. To prepare noisy 

test set, two steps were implemented. First, the root-mean-

square sound intensity of each signal was normalized to 65 

dB SPL, corresponding to a moderate speech level. Next, “S” 

and “N” were combined at five SNR values (-10, -5, 0, 5, and 

10 dB). The “S” and “N” signals were adjusted 

simultaneously by the same absolute amounts to produce 

different SNRs. For example, when the input SNR was 

increased by 10 dB, “S” was increased by 5 dB, and “N” was 

decreased by 5 dB. Finally, the combined sounds were 

normalized to 65 dB SPL. 

4.2. Measurement procedure 

We performed objective evaluations to measure the 

performance of SNR and sound quality of GMAPA+DPF. In 

addition, we intend to observe the correlations of ER values 

of DPF algorithm with output SNR and sound quality 

performances. The results of the original noisy signals, and 

GMAPA were tested to compare with GMAPA+DPF. In this 

study, a single channel DPF (c=1; 𝑓𝐿
(𝑐)

=0 Hz, 𝑓𝐻
(𝑐)

=8k Hz in 

Eq. (13)) was used. The knee point (T) of DPF was set 

according to the mean level of each input noisy signals. For 

example, if the mean level of input signal is 60 dB SPL, then 

T will be set to 60 in DPF. In addition, the parameters of 

𝛼𝑚𝑎𝑥, b, and c in GMAPA algorithm were set to 2.0, -1.0 and 

11, respectively. 

In this study, the ER values in GMAPA+DPF were set 

to 2, 3, 4, and 5, respectively, which were denoted as 

G+DPF(2), G+DPF(3), G+DPF(4), and G+DPF(5) in the 

following discussion. In addition, the results of GMAPA 

algorithm was also presented for comparison. For each 

approach, 150 testing utterances (30 Mandarin sentences × 5 

SNR levels) were used to compare the output long-term SNR 

and sound quality performance. 

4.3. Methods of objective evaluation 

In this study we used the separation technique of the long-

term SNR [20] and perceptual evaluation of speech quality 

(PESQ) [19, 23] measurement to compare performances. The 

separation technique of long-term SNR was developed by 

Hagerman and Olofsson [20] that was used to evaluate the 

output SNR performance by non-linear processing (e.g., 

compression amplification scheme of HAs [16], and speech 

enhancement [15, 17]). It was used to extract the speech and 

noise components from processed sounds. A higher output 

SNR value corresponds to a better SNR performance. Next, 

the PESQ algorithm was used to evaluate the sound quality 

performance. The PESQ algorithm is the current industry 

standard for the objective prediction of one-way speech 

quality, and was accepted in February 2001 by the 

Telecommunication Standardization Sector of the 

International Telecommunication Union (ITU-T) as 

objective speech quality measurement standard P.862 [19]. 

The PESQ algorithm uses two input signals to compute the 
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speech quality (i.e., the unprocessed speech sample and 

processed speech), and score ranges from –0.5 (worst) to 4.5 

(best). More details of the long-term SNR and PESQ 

measurements can be found in [19, 20, 23,24].  

4.4. Experiment results 

4.4.1. Objective evaluation 

Table I and II show the results of long-term SNR and PESQ, 

respectively, of original noisy, GMAPA, G+DPF(2), 

G+DPF(3), G+DPF(4), and G+DPF(5). For the long-term 

SNR results, a higher value indicates better SNR 

performance. From Table I, the proposed G+DPF (i.e., ER 

from 2 to 5) algorithms achieved higher SNR values than 

original noisy and GMAPA for all of the test conditions, 

suggesting that GMAPA+DPF can provides better speech 

intelligibility in different noisy conditions. Furthermore, it is 

noted that using a larger ER can obtain a higher output SNR 

value, especially in low SNR conditions (-10 dB to 0 dB).  

For the PESQ results, a higher PESQ score represents 

better sound quality [19] in Table II. The results in Table II 

show that G+DPF (i.e., ER from 2 to 5) outperformed 

original noisy and GMAPA alone in various test conditions. 

Moreover, the results indicated that the sound quality is 

decreased when increasing the ER values. The reason might 

result from that a higher ER value can cause distortions easily 

for speech segments than a lower ER. Accordingly, a higher 

ER value may deteriorate the performance of sound quality. 

In addition, from the above results, we observe a trade-off 

between output SNR and sound quality performance when 

deciding a suitable ER value in the DPF algorithm. 
 

Table I. Output SNR values for original noisy and five 

approaches in different SNRs. 

 -10 dB -5 dB 0 dB 5 dB 10 dB 

Original -10 -5 0 4.99 9.98 

GMAPA 0.40 8.83 13.60 17.03 20.29 

G+DPF(2) 1.82 9.80 14.09 17.30 20.49 

G+DPF(3) 2.07 9.96 14.15 17.33 20.50 

G+DPF(4) 2.22 10.03 14.16 17.34 20.51 

G+DPF(5) 2.31 10.07 14.17 17.34 20.51 
 

Table II. PESQ values for original noisy and five algorithms in 

different SNRs.  

 -10 dB -5 dB 0 dB 5 dB 10 dB 

Original 0.99 1.07 1.20 1.40 1.69 

GMAPA 1.19 1.16 1.62 1.91 2.09 

G+DPF(2) 1.90 1.96 2.24 2.48 2.79 

G+DPF(3) 1.80 1.93 2.13 2.36 2.63 

G+DPF(4) 1.77 1.87 2.05 2.26 2.54 

G+DPF(5) 1.74 1.81 1.98 2.19 2.50 
 

 

4.4.2. Spectrogram analysis 

A spectrogram shows the spectral representations of a time-

varying signal and is often used to analyze frequency and 

level properties of speech signals [25]. Figure 4 illustrates six 

sub-figures, showing the spectrograms of: (a) original noisy 

speech at 0 dB SNR; (b) GMAPA, (c) G+DPF(2), (d) 

G+DPF(3), (e) G+DPF(4), and (f) G+DPF(5). The original 

noisy spectrogram was collected from a male voice in 

Mandarin, saying “He can play table tennis very well”. It can 

                                                                 
1 http://goo.gl/4PDGk6 

be noted that sub-figures (c) to (f), namely G+DPF(2) to 

G+DPF(5), can provide higher SNR performances than sub-

figures (a) and (b), namely the original speech and the 

GMAPA algorithms alone. The sub-figures (c) to (f) also 

show that the proposed DPF remove the residual noise in the 

silence segments, and thus the annoying musical tones are 

effectively suppressed. Real subject tests will be conducted 

in our future study to quantify this advantage of DPF.  
 

 
 

Figure 4: Spectra of (a) original 0 dB SNR noisy speech; (b) 

GMAPA; (c) G+DPF(2); (d) G+DPF(3); (e) G+DPF(4); (f) 

G+DPF(5).(For the demo files please refer to 1). 
 

5. DISCUSSION AND CONCLUSION 

This paper proposes a novel DPF approach to further 

improve the SNR and sound quality of enhanced speech 

signals. The proposed DPF approach uses a non-linear 

function to enhance the energy contrast (discrimination) 

between speech and noise segments in a noisy utterance. To 

verify the proposed DPF approach, this study integrates the 

proposed DPF approach with the GMAPA speech 

enhancement algorithm. The integration approach is termed 

GMAPA+DPF. The objective evaluation results from output 

SNR and PESQ confirmed that GMAPA+DPF outperformed 

GMAPA alone, verifying that the DPF approach can further 

improve enhanced signals to achieve higher SNR and better 

sound quality. Moreover, musical noises are effectively 

suppressed. Because of its efficient computation, low latency, 

and satisfactory sound quality, the DPF approach can be 

suitably integrated in HA devices.  

    The experimental results indicate that a higher 

expansion rate (ER) enables DPF to achieve higher output 

SNR values while decreased PESQ scores. The results 

suggested that there is a trade-off between SNR and sound 

quality. In the future, we will further incorporate the adaptive 

adjustment scheme to optimize the parameters of knee point 

(T) and ER to achieve maximal benefits for specific tasks. 

Meanwhile, we will explore the correlation of T and ER with 

intelligibility of processed speech signals. 
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