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ABSTRACT 

A hearing model, which is parameterized by hearing thresholds, 

degrees of loudness recruitment and reductions of frequency 

resolution of a hearing-impaired (HI) patient, is proposed in this 

paper. The model is developed in the filter-bank framework and is 

flexible for fitting hearing-loss conditions of HI patients. 

Psychoacoustic experiments were conducted under clean and noisy 

conditions to validate the model’s capability in predicting Mandarin 

speech intelligibility for HI patients. Statistical analysis on the 

hearing-test results suggests that the proposed model can predict 

Mandarin speech intelligibility for HI patients to a certain degree. 

 

Index Terms—hearing model, hearing impaired, loudness 

recruitment, cochlear frequency selectivity, speech intelligibility 

1. INTRODUCTION 

Common hearing aids usually focus on compensating the hearing 

thresholds for HI patients, such as the National Acoustic 

Laboratories’ (NAL) prescription [1]. However, in addition to the 

hearing threshold, hearing loss also associates with reduced 

dynamic range (loudness recruitment) [2], reduced temporal 

resolution for narrow-band fluctuating stimuli [3][4], and reduced 

frequency selectivity [5][6]. Although DSP algorithms can be 

developed to compensate hearing-loss factors, their efficacy is hard 

to assess. The most straightforward evaluation for an algorithm is to 

play processed speech signals to the hearing impaired. However, 

each patient suffers from a unique degree of hearing loss and his 

willingness to participate in extensive psychoacoustic experiments 

is usually low. These problems become troublesome for developing 

hearing aids. Therefore, as an alternative approach, a hearing model 

for the hearing impaired is in great need. The goal is to build a 

hearing model such that normal people hearing processed speech 

through the model would have similar sensations to the hearing 

impaired perceiving normal speech. If we can successfully build 

such model, we might be able to evaluate hearing-aid algorithms by 

conducting psychoacoustic experiments on normal-hearing (NH) 

subjects. 

 Nejime and Moore integrated previously developed 

algorithms [7][8] to form a model which simulates hearing-loss 

factors of hearing threshold elevation, loudness recruitment, and 

reduced frequency selectivity [9]. Their goal was to verify those 

hearing-loss factors indeed affect speech intelligibility of NH 

people. In the first stage of their model, they adopted the concept of 

smearing the spectrum to simulate the reduced frequency selectivity 

of the cochlea. The equal loudness curve (ELC) correction was also 

considered to compensate the gains given by the outer and the 

middle ear [10]. In the second stage, the speech signal was split into 

13 subbands and threshold elevation and loudness recruitment were 

simulated in each subband [8]. As shown in [11], by matching the 

loudness curves of two ears of subjects with unilateral hearing loss, 

one can observe the loudness function between the normal ear and 

the impaired ear is almost a straight line up to 90~100 dB sound 

pressure level (SPL), and the slope N of the function determines the 

degree of loudness recruitment. The larger the slope, the more 

severe loudness recruitment the patient experiences. This linear 

function simply corresponds to increasing the instantaneous 

magnitude of each sub-band signal to power of the value of the 

slope. It was implemented in [8] with small modifications to avoid 

generating noise during the exponentiation process. In short, this 

stage amplifies the magnitude difference of adjacent time-domain 

samples. Such large variations in loudness are usually perceived 

and reported by HI patients. 

 Some characteristics of the above cited model are worth 

noting. First, the minimum audible level (MAL) in each subband 

cannot be set independently. In the model, the MAL depends on the 

degree of the loudness recruitment (the slope N), which is assumed 

ended at 100 dB SPL. In other words, the MAL is automatically 

determined by the 100 dB SPL and the recruitment slope N. Second, 

the frequency smearing was implemented by smoothing the 

magnitude response of a Fourier spectrum and keeping the phase 

response intact. However, as reported in [7], keeping the original 

phase would offset the degree of smearing imposed on the 

magnitude spectrum such that the desired degree of smearing is 

hard to reach. Third, the frequency smearing and the loudness 

recruitment were implemented in the short-term Fourier transform 

(STFT) and the filter-bank frameworks, respectively [9], but not in 

a unitary framework. In this paper, we propose a unitary hearing 

model in the filter-bank framework for the hearing impaired. Our 

proposed model has parameters of MALs, degrees of loudness 

recruitment and degrees of frequency smearing. In addition, the 

degree of frequency smearing is ensured by using white-noise 

carrier to discard the original fine structures (phases) in each 

subband. 

 This paper is organized as follows. In section 2, we describe 

the proposed model. Experiment results of Mandarin speech 

intelligibility tests are demonstrated in section 3 to validate the 

proposed model. Finally, we end in section 4 with conclusions and 

discussions. 
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Fig. 1. Magnitude spectrograms with different degrees of loudness 

recruitment. (a) Original spectrogram; (b)-(d) spectrograms with 

loudness recruitment factor N = 1.5, 2, and 3. 

2. PROPOSED MODEL 

In this section, we describe the proposed model which includes the 

loudness module and the spectral smearing module to simulate the 

effects of loudness recruitment and reduction of frequency 

selectivity, respectively. Simple examples are given to show the 

effects of these modules. At the end, the two modules are integrated 

within the filter-bank framework. 

2.1. Loudness module 

We adopt the same assumption as in [9] that NH listeners can hear 

sound from 0 dB to 100 dB SPL. Instead of assuming the loudness 

recruitment ends at 100 dB, we include the MAL as an important 

parameter. Therefore, we modify the magnitude of speech signals 

sample-by-sample using the following piecewise linear function. 

 

{

𝐿𝑝 = 0 + (𝐿𝑢 − 𝑇),                                                        𝐿𝑢 < 𝑇

𝐿𝑝 = 0 + 𝑁(𝐿𝑢 − 𝑇),                          𝑇 ≤ 𝐿𝑢 < 𝑇 + 100/𝑁

𝐿𝑝 = 100 + [𝐿𝑢 − (𝑇 + 100/𝑁)],           𝑇 + 100/𝑁 ≤ 𝐿𝑢

   (1) 

 

where 𝐿𝑢 (in dB) is the intensity of the original sound; 𝐿𝑝 (in dB) 

is the intensity of the processed sound; N represents the degree of 

loudness recruitment; T (in dB) represents the MAL; and 100/N 

represents the range of sound level where loudness recruitment 

occurs. Note, 𝐿𝑝 simulates the perceived intensity by HI patients. 

According to equation (1), no recruitment occurs when the sound 

intensity is less than the MAL. When the sound intensity is within 

the recruitment range, the perceived intensity should be determined 

by N and T collectively. When the sound intensity is higher than the 

upper bound of the recruitment range, the perceived intensity is the 

surplus plus 100 dB. 

 Fig. 1 shows the magnitude spectrograms of a sample 

utterance with different recruitment factor N = 1.5, 2 and 3. The 

minimum audible level T is set to 33.3, 50 and 66.6 dB, 

respectively, to match the 𝐿𝑢, 𝐿𝑝 relation of the recruitment model 

proposed in [9]. The normalized root mean square error between 

magnitude spectrograms from our proposed module and Moore’s 

model in [9] is less than 1%. Therefore, our module not only can 

match Moore’s model by choosing an appropriate T, it also 

provides an option to set MALs, which are important hearing 

parameters of a HI patient. 
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Fig. 2. Magnitude spectrograms after frequency smearing. (a) 

Original spectrogram; (b)-(d) smeared spectrograms with 

symmetric broadened factor of 1.5, 3, and 6, respectively. 

2.2. Spectral smearing module 

Broader bandwidths of cochlear filters degrade the frequency 

selectivity of the HI patients. The decrease of the frequency 

resolution can be modeled by smearing the spectrum. Considering 

cochlear filters at a particular location on the basilar membrane of 

NH people and of HI patients, frequency components within the 

impaired (broader) cochlear filter but out of the normal (narrower) 

cochlear filter would not excite the auditory nerve of NH people. 

Therefore, we need to modulate those components in a certain way 

such that NH people can hear those components to experience the 

sensation of HI patients. To model any shapes of broadened filters 

for different HI patients, each broadened filter is constructed by a 

linear combination of all normal filters in our approach. Therefore, 

the response of a broadened filter can be simulated by modulating 

output powers of all normal filters with their corresponding gains 

(i.e., coefficients of the linear combination equation) to the center 

frequency of that broadened filter. 

 The 128 cochlea filters in the auditory model [12] were used 

to simulate cochlear filters of NH people. A linear combination of 

these normal filters was used to approximate a broadened filter. The 

linear combination coefficients can be determined by solving the 

following optimization problem: 

 

{

minx|Ax − b|2,          subject to  0 ≤ 𝑥𝑖 ≤ 1

A ∈ ℝ
(

𝐹𝑠
2

)×128
,  x ∈ ℝ128×1,   b ∈ ℝ

(
𝐹𝑠
2

)×1

        (2) 

    

where 𝐹𝑠 is the sampling frequency of the sound and each column 

of the A matrix is the frequency response of a NH cochlear filter 

from 0 to 𝐹𝑠 2⁄  Hz. The vector x contains 128 linear combination 

coefficients to approximate the broadened cochlear filter b. In 

principle, b can be in any shape, or be approximated using the 

rounded-exponential filter with coefficient p (i.e., the roex(p) filter) 

just like in [7]. 

 After deriving the linear combination coefficients, we need 

to modulate output envelopes of 128 normal cochlear filters to the 

broadened cochlear filter by multiplying a proper carrier signal. The 

processed sound is intended for testing NH subjects, so the carrier 

signal must be somehow related to the normal cochlear filter. As 

indicated by [13][14], listening performance of NH subjects to the 

white noise modulated sounds sets the upper bound for 

performance of HI patients to normal sounds. Besides, our goal is 

to predict Mandarin speech intelligibility for HI patients in noisy 
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conditions. Therefore, we used the white noise filtered by the 

normal cochlea filter as the carrier signal in our module. 
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Fig. 3.  Block diagram of our proposed model. 

 

 Fig. 2 shows an original STFT spectrogram and broadened 

spectrograms produced by our module with broadened factors (BFs) 

of 1.5, 3, and 6. The BF is defined as the ratio of the equivalent 

rectangular bandwidth (ERB) of the broadened cochlear filter to the 

ERB of the normal cochlear filter. Clearly, the harmonic structure 

only appears at low frequencies due to the nature of constant-Q 

cochlear filters. The low-frequency cochlear filters are much 

narrower than the high-frequency cochlear filters such that 

individual harmonics can be resolved only at low frequencies but 

not at high frequencies. As shown in Fig. 2, the spectrogram is 

more smeared with a higher BF. The harmonics can still be 

observed with BFs of 1.5 and 3, but almost destroyed with the BF 

of 6. In addition, the timbre (encoded by spectral profiles) is 

severely distorted due to the smearing effect. Comparing with 

examples shown in [7], our proposed model has stronger smearing 

effect than the model in [9] by using noise carriers. 

2.3. Integrated model  

Because both loudness and spectral smearing modules are proposed 

in the filter-bank framework, they are easily integrated into a 

unitary system as shown in Fig. 3. The ELC correction is also 

included in our system. Not like in [9] that the ELC correction was 

implemented in the STFT domain, our system corrects the loudness 

at center frequencies of 128 NH cochlear filters. The “Hearing 

Impaired Conditions” block stores each patient’s personalized 

MALs, degrees of loudness recruitment (DLR) and the BFs. The 

MALs and DLR are used by the loudness module and the BFs are 

used by the spectral smearing module. 

3. MODEL VALIDATION AND DISCUSSIONS 

The model is validated by results of psychoacoustic experiments 

which assess speech intelligibility scores of NH subjects to the 

processed speech and scores of HI patients to normal speech. 

 In these experiments, six 25-Mandarin-word lists in [15] 

were used for intelligibility tests. Each Mandarin monosyllable 

word consists of three elements: two phonemes (initial consonant 

and final vowel) and a tone. The intelligibility scores were derived 

by the ratio of the number of correctly identified elements to the 

total number of elements. All of the 150 Mandarin speech signals 

for listening tests were produced from the website 

(http://stroke-order.learningweb.moe.edu.tw/home.do?rd=72) 

developed by the Ministry of Education of Taiwan for learning 

Mandarin. All sounds were downsampled with 16 kHz sampling 

frequency and normalized to equal power. As in [16], listening tests 

were conducted under five conditions: clean, in speech-shaped 

noise (SSN) of 0 and 4 dB SNR, in two-talker speech (TTS) 

interference of 3 and 7 dB SNR. 

3.1. Experiments for HI patients 

The MALs at several frequencies of 4 HI patients (P1, P2, P3, and 

P4) were measured and are listed in Table 1. In addition to MAL 

parameters, the BFs were also measured at three center frequencies 

(0.5, 1.0, 2.0 kHz) by following procedures in [10] and are shown 

in Table 2. Test sounds were first normalized to 65 dB SPL and 

linearly amplified based on the Cambridge formula [17] with each 

patient’s corresponding MALs at center frequencies of 0.5, 1.0 and 

2.0 kHz to ensure they are audible to each patient. Experiments 

were conducted in Tzu Chi Hospital using an AKG K702 studio 

headphone in an anechoic chamber. During tests, we found 

intelligibility scores of patient 4, who is with the least severe 

hearing loss, were very high in all noisy conditions. Therefore, we 

reduced 4 dB in all noisy conditions for patient 4 to make his 

intelligibility scores more distinct. The intelligibility scores of 4 

patients under clean and four noisy conditions are shown in Table 

3. 

 

Table 1. MALs (in dB) of the better ear of 4 HI patients 

 Age 250 

Hz 

500 

Hz 

1000 

Hz 

2000

Hz  

4000 

Hz 

P1 27 35 40 60 70 70 

P2 72 55 55 55 55 55 

P3 36 50 50 40 65 90 

P4 56 30 35 40 55 45 

 

Table 2. BFs of the better ear of 4 HI patients  

 500 Hz 1000 Hz 2000 Hz 

P1 2.85 3.29 3.19 

P2 2.6 2.79 2.57 

P3 3.2 2.95 4.66 

P4 3.41 1.27 3.25 

 

Table 3. The Mandarin intelligibility scores (in %) of 4 HI patients 

under clean and four noisy conditions 

 clean SSN 0 SSN 4 TTS 3 TTS 7 

P1 88.22 72 74.67 70 75.33 

P2 80.22 53.33 56.67 55.33 60 

P3 60.22 61.33 56 49.33 56.67 

 clean SSN -4 SSN 0 TTS -1 TTS 3 

P4 88.67 71.33  85.33 72 75.33 

3.2. Experiments for NH subjects 

The second set of experiments was to assess intelligibility scores of 

NH subjects to processed Mandarin speech signals by our model 

with all personalized parameters of each patient. Two NH subjects 

aged between 22 and 26 were recruited for each test condition of 

each patient’s model. The average intelligibility score and 

corresponding standard deviation are plotted against the original 

intelligibility score of each HI patient under each test condition in 

Fig. 4. Results for P1 to P4 are demonstrated in Fig. 4(a) to 4(d), 

respectively. 

 As shown in Fig. 4(a), the original intelligibility scores of P1 

are higher than the intelligibility scores of NH subjects in clean and 

all noisy conditions. A possible reason is that P1 was born with 

hearing loss such that he might have a more robust cognitive 

function for recognizing Mandarin speech. In addition, Fig 4(d) 

shows the intelligibility scores from the P4 model are very close to 

the original intelligibility scores of P4, who is with the least severe 

hearing loss. 
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Fig. 4. The mean and the standard deviation of intelligibility scores 

of NH subjects to processed speech and the intelligibility scores of 

HI patients to original speech under clean and noisy conditions. 

3.3. Statistical analysis on test results 

In addition to showing the mean and the standard deviation in Fig. 

4 for each test condition, we also conducted analysis of variance 

(ANOVA) to assess the statistical significance of the predicted 

scores. First, one-way ANOVA tests using each patient’s original 

intelligibility scores and predicted scores from two NH subjects 

were carried out for three comparisons: (1) low SNR SSN (SSN-L) 

versus high SNR SSN (SSN-H), (2) low SNR TTS (TTS-L) versus 

high SNR TTS (TTS-H), and (3) clean versus SSN-H. The analysis 

results are shown in Table 4~6. These ANOVA results strengthen 

the results shown in Fig. 4 and four out of twelve tests turn out to 

be significant. 

 

Table 4. Results of one-way ANOVA between SSN-L and SSN-H 

conditions 

 SSN-L vs. SSN-H  

P1 F(1, 4)=1.911, p = 0.239 not significant 

P2 F(1, 4)=2.563, p = 0.185 not significant 

P3 F(1, 4)=1.388, p = 0.304 not significant 

P4 F(1, 4)=18.406, p = 0.013 significant 

 

Table 5. Results of one-way ANOVA between TTS-L and TTS-H 

conditions 

 TTS-L vs. TTS-H  

P1 F(1, 4)=2.672, p =0.177 not significant 

P2 F(1, 4)=16.259, p = 0.016 significant 

P3 F(1, 4)=12.381, p = 0.024 significant 

P4 F(1, 4)=2.595, p = 0.183 not significant 

 

Table 6. Results of one-way ANOVA between clean and SSN-H 

conditions 

 Clean vs. SSN-H  

P1 F(1, 4)= 5.536, p = 0.078 not significant 

P2 F(1, 4)=5.444, p = 0.080 not significant 

P3 F(1, 4)=0.570, p = 0.492 not significant 

P4 F(1, 4)=18.275, p = 0.013 significant 

  

 These one-way ANOVA test results might not be able to 

offer meaningful implications due to the small sample size in each 

test. Hence, we also conducted two-way ANOVA tests by 

considering more data in each test. For each one-way ANOVA test, 

data collected from 3 subjects (1 HI and 2 NH subjects) were used. 

In contrast, the two-way ANOVA tests were carried out by treating 

“noise type” and “patient” as two independent variables. Table 7 

shows the two-way ANOVA results for 4 patients and 3 noise types 

(clean, SSN-L, and SSN-H). These results demonstrate (1) highly 

significant differences within noise types [F(2, 33)=29.688, 

p<0.001] and within patients [F(3, 32)=32.293, p<0.001]; (2) no 

significant correlation between “noise type” and “patient” [F=1.283, 

p=0.302]; (3) variance within 3 noise types is comparable to 

variance within 4 patients [F=29.688 vs. F=32.293].  

 Table 8 shows the two-way ANOVA results for 4 patients 

and 2 noise types (TTS-L, and TTS-H). These results demonstrate 

(1) highly significant differences between noise types [F(1, 

22)=30.349, p<0.001] and within patients [F(3, 20)=21.394, 

p<0.001]; (2) no significant correlation between “noise type” and 

“patient” [F=1.840, p=0.180]; (3) variance between two noise types 

is larger than variance within 4 patients [F=30.349 vs. F=21.394].  

 These “highly significant” two-way ANOVA test results 

indicate that, for each patient and in each test condition, our 

predicted Mandarin intelligibility scores and patient’s original score 

are highly probably produced by the same underlying behavior. 

 

Table 7. Results of two-way ANOVA for 4 patients and three noise 

types (clean, SSN-L, and SSN-H) 

Variable p-value  

noise F=29.688, p<0.001 highly significant 

patient F=32.293, p<0.001 highly significant 

noise*patient F=1.283, p=0.302 not significant 

 

Table 8. Results of two-way ANOVA for 4 patients and two noise 

types (TTS-L, and TTS-H) 

Variable p-value  

noise F=30.349, p<0.001 highly significant 

patient F=21.394, p<0.001 highly significant 

noise*patient F=1.840, p=0.180 not significant 

 

4. CONCLUSION AND FUTURE WORK 

In this paper, we propose a hearing model, which can predict 

Mandarin speech intelligibility for the HI patients to a certain 

degree. Our model can simulate hearing-loss conditions (minimum 

audible level, loudness recruitment, and reduction of frequency 

selectivity) in the unitary filter-bank framework. The model is 

validated by assessing Mandarin speech intelligibility of four HI 

patients under clean and four noisy conditions. In the near future, 

we will test more patients to establish their personalized hearing 

models. Later, we will use the personalized model to assess speech 

enhancement algorithms for each HI patient. Hopefully, the 

assessment can provide insights to speed up the development of 

speech enhancement algorithms for each HI patient in the future. 
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