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ABSTRACT 

 

Multi-channel cochlear implants (CI) leverage frequency 

based cochlear tonotopic mapping to map acoustic 

information to the cochlear place of stimulation which is 

primarily determined by electrode locations.  Despite the 

fact that electrode locations within the cochlea are unique to 

each patient, the acoustic frequencies assigned to the 

electrodes by the CI processor are determined generically, 

resulting in a mismatch between intended and actual pitch 

perception. This is known to be a limiting factor for hearing 

outcomes with CIs. In this study, we propose a novel, image-

guided CI processor programming strategy to select more 

optimal, patient-customized frequency assignments. The 

performance of the proposed strategy was evaluated using 

vocoder-based simulations with ten normal hearing listeners. 

In our simulations, our strategy results in significantly better 

speech recognition scores than the standard clinical strategy. 

 

Index Terms— Cochlear implants, sound coding, 

algorithms. 

 

1. INTRODUCTION 

Complex temporal-spectral patterns of neural activity occur 

in the peripheral auditory system [1]. In natural hearing, 

sound stimulates auditory nerve fibers in the cochlea to 

induce the sensation of hearing. Auditory nerve fibers  have 

intrinsic “characteristic frequencies” (CFs) and are 

tonotopically organized in the cochlea, i.e., nerve fibers 

located at deeper sites along the length of the cochlea have 

lower CFs and thus when they are simulated, lower pitched 

sounds are perceived. Cochlear implants (CI) exploit this 

natural phenomenon by providing electrical stimulation 

across the length of the cochlea via an electrode array, which 

is blindly threaded into the cochlear bony labyrinth during 

surgery. Insertion depth of the electrode array, number of 

electrodes, degree of neuronal survival, positioning and 

proximity of electrodes to the auditory nerve fibers largely 

determine which tonotopically mapped groups of nerve 

fibers are stimulated by each electrode.  Variations in the 

above parameters along with other physiological and 

cognitive factors, (e.g., age at implantation, duration of 

deafness and implant use, rehabilitation, to name a few) are 

key factors responsible for large variations in cochlear 

implant outcomes. 

      While there have been outstanding advancements in CI 

signal processing, there is an open-ended research issue in 

that once the CI surgical procedure is performed, there is a 

mismatch between frequency bands and the true tonotopic 

locations where stimulation should occur along the basilar 

membrane. Deeper electrode insertions generally favor 

improved speech recognition in CIs [2-7]. This is due to 

accessibility of the apical regions of the cochlea which 

correspond to lower frequencies and hence theoretically 

more low-frequency speech information (e.g., location of 

F0/F1 formants) can be provided (without spectral 

distortion). However, deeper electrode insertion has 

challenges of its own, e.g., insertion trauma. 

     Variations in electrode insertion depth result in 

differences in accessible tonotopic range among implant 

recipients, (i.e., range of CF stimulated at the corresponding 

electrode locations). For example, with insertion depth of 30 

mm from the round window, the most apical electrode would 

correspond to CF of approximately 185 Hz, while a 

shallower insertion of 20 mm will correspond to 1170 Hz (a 

clear mismatch between the intended frequency of 

stimulation and corresponding correct location along the 

basilar membrane). Despite these variations in electrode 

insertion depth, contemporary CI sound processors use a 

standard mapping strategy for all implantees and map the 

full acoustic range of speech (approximately 100 - 200 up to 

8500 Hz) to  the  tonotopic  location  of  electrode array  and 
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simply hope that CI users will learn to   adapt   to   the  

modified   map over time.    Such a mismatch between freq. 

analysis bands of CI sound processor and the CF of the 

nerve fibers that are stimulated can result in frequency-place 

shifting (frequency offset), frequency compression, 

expansion, warping, or a combination of the above. These 

factors deteriorate spectral characteristics of the perceived 

sound and hence reduce speech intelligibility. Many studies 

have explored the effect of these mentioned spectral 

distortions on speech intelligibility in normal hearing (NH) 

listeners and CI users [7-14]. Scientific findings suggest that 

peak performance is achieved when full acoustic range is 

mapped to the tonotopic map in matched condition (i.e., 

analysis bands correspond to the tonotopic map of the 

cochlea); however, minor mismatch does not account for the 

significant reduction in performance [7, 12]. 

     Contrary to these cited studies, some research groups 

argue that results from acute studies underestimate the effect 

of learning/adaptation, and that neural plasticity of the 

cortex can facilitate the creation of an “adapted electric 

map” over time, (i.e. the listener gradually adapts to the 

altered pattern of stimulation) [1, 11, 13]. While the extent 

of brain plasticity is currently unknown, current data 

suggests tolerance of only few millimeters [7]. It is generally 

agreed that large spectral distortions caused by severe 

frequency-place mismatch could be one of many factors 

responsible for low asymptotic performance as well as 

longer adaptation periods among implant recipients. 

     The strategy we present leverages these above findings 

and attempts to reach a compromise between frequency-

place matching, frequency compression, and truncation of 

low frequencies. We propose a user-customized mapping 

strategy, which relies on information provided by image 

analysis algorithms that operate on CT scans of individual 

recipients [15]. The details of the algorithm are provided in 

Sec. 2, followed by acute evaluation with 10 NH participants 

in Sec. 3. Conclusions are presented in Sec. 4. 

 

2. METHOD 

In a cochlear implant, any range of frequency can 

theoretically be presented to any electrode [9]. Commercial 

CI sound processors typically map the full acoustic range 

from approximately 100 – 8500 Hz to the electrode array 

which comprises of 12 – 22 electrodes. Figure 1 shows the 

default frequency mapping scheme of analysis filters in 

Advance Combinations Encoder (ACE) [16] sound coding 

strategy used in Nucleus devices manufactured by Cochlear 

Ltd. Since low frequencies are more critical for speech 

understanding, higher numbers of channels with smaller 

bandwidths are used to represent low frequencies. The same 

frequency allocation table is normally used in all CI users 

despite variations in electrode locations. 

     Noble et al. have devised a new image processing 

technique which accurately locates the spatial location of 

electrode contacts and neural stimulation sites from pre and 

post implantation CT scans of recipients’ cochleae [14, 17, 

18]. The final output of this approach is programming-

relevant information in the form of electrode distance-vs.-

frequency (DVF) curves, an example of which is shown in 

Figure 2. Each blue or red DVF curve in the plot 

corresponds to an electrode in the array. A DVF curve 

defines the Euclidean distance from the corresponding 

electrode to the closest tonotopically mapped neural 

stimulation sites. Distance is shown on the y-axis and the 

tonotopic frequency of the neural sites is varied on the x-

axis. Thus, a DVF curve defines the distance from different 

neural sites to the corresponding electrode. These curves 

provide insight not only into CF of each stimulation site, but 

also the degree of spectral overlap caused by the 

neighboring electrodes. A comparison of CF determined by 

electrode DVF curves (Figure 2) and default frequency 

allocation (Figure 1) reveals a high degree of frequency 

mismatch. In a previous clinical study, Noble and Gifford et 

al. have shown that hearing outcomes can be improved 

through reduction of spectral overlap artifacts using a user-

customized strategy that relies on information from DVF 

curves [19]. However, that strategy did not attempt to 

address frequency mismatch artifacts. Here, we propose a 

new, user-customized frequency allocation scheme based on 

 
Fig. 1. Default frequency allocation table for analysis bands in ACE sound processing strategy. 

 

 
Fig. 2. Electrode distance-vs.-frequency curves of a 

randomly selected implant user, shown as a sequence of blue 

and red segments. 
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the DVF curve data of individual implant users that is 

designed to improve outcomes by reducing frequency 

mismatch artifacts. 

     The proposed frequency allocation scheme derives center 

frequencies of the filterbanks from DVF curves. Each curve 

in Figure 2 corresponds to the spatial proximity of an 

electrode to the nerve fibers, and minimum points on the 

curve represent the center CF stimulated by that electrode. 

We use these CFs of the stimulation sites as a reference to 

design analysis filter-banks. The frequency space is divided 

into three sub-bands: B1, B2, and B3, with frequency ranges 

of = [0.5–1.0] kHz, = [1.0–3.0] kHz, and = [3.0–

8.0] kHz respectively. From DVF curves, we first determine 

the number of electrodes, ni, whose CFs lie in each of the 

i=1, 2, 3 sub-bands and then we follow the following set of 

procedures: 

 Step#1: If n1≥2, design n1 filter-banks with center-

frequencies corresponding to CFs of the electrodes (perfect 

matching).  Similarly, design n2 filters in B2 space by 

perfectly matching the center frequencies of the filters with 

the corresponding CFs of the curves.  

Step#2: If n1<2, borrow (2- n1) filters from B2 and map 

them on to the B1 space. Introduce mild frequency 

compression in lower-most bands of B2 (to compensate for 

filters allocated to B1) while maximizing frequency matching 

of the remaining filters in B2 with CFs of the curves.  

Step#3: Design n3 filters in B3 by using logarithmic/mel 

filter spacing. 

     The aim of this 3 step rule set was to maximize frequency 

matching at lower frequencies (less than 3 kHz) while 

ensuring the lowest frequencies are not truncated. For 

shallow insertion depths, instead of matching frequencies 

and thus truncating the low frequencies, we use a mild 

frequency compression while maximizing frequency 

matching between 1-3 kHz.  This is based on the speech 

intelligibility index (SII) which weights frequency 

information in this range most critical for speech 

understanding [20]. In order to avoid loss of low frequencies 

for shallow insertions, a minimum of 2 filters are always 

allotted in B1 space. For deeper insertions which provide 

tonotopically accurate access to frequencies lower than 

500Hz, filter-banks are matched according to DVF curves. 

Figure 3 depicts the relationship between electrode locations 

in the cochlea, their tonotopic frequencies, and frequency-to-

place mapping in (a) the standard/default fitting technique 

and (b) the user-customized mapping technique proposed 

here. The tonotopic map is derived from DVF curves of an 

implant user and varies across CI recipients. Figure 3(b) 

clearly shows a reduction in the spectral shift and frequency-

compression in the customized map as compared to the 

standard map; however, it is achieved at the cost of 

decreasing the number of analysis bands in low frequencies, 

which may have significant implications for speech 

recognition. 

 

3. PROCEDURE, EVALUATION, AND RESULTS 

In order to evaluate performance of the proposed imaging 

based technique and compare it against standard methods, 

we followed the following experimental protocol. 

 

3.1. Experimental method 

     Ten normal-hearing (NH) listeners between the ages of 

18-24 participated in the study. All participants were native 

speakers of American English, and had pure tone 

audiometric thresholds better than 20 dB HL at octave 

frequencies from 250 to 8000Hz. Each subject was tested 

with a single unique frequency-place map which was 

determined from imaging data (DVF curves) of 10 CI users 

(1 map/subject). CFs computed from curve minimas on 

electrode DVF curves were used to set center frequencies of 

filter banks in the following mapping conditions. 

     In order to simulate CI sound processing, a noise-band 

vocoder was implemented. The input signal was first pre-

emphasized and passed through a set of bandpass analysis 

filters. Next, envelopes from each frequency channel were 

extracted via rectification and low-pass filtering. The 

envelope of each band was modulated with white noise and 

the resulting multiband signal was passed through a set of 

bandpass synthesis filters. The signals were finally summed 

up across all bands to produce a single vocoder-processed 

acoustic signal. Each analysis filter determines the acoustic 

frequency range assigned to each CI electrode, while each 

synthesis filter simulates the perceived sound when the 

corresponding CI electrode is activated and stimulates a 

group of auditory nerve fibers. We manipulate the 

characteristics of the analysis and synthesis filters to 

simulate the following four mapping conditions: 

Condition#1: Ideal CI position, default filter condition: In 

this condition, default ACE analysis filters and identical 

synthesis filters are used to simulate a perfect stimulation 

place matching.  

 
(a) 

 
(b) 

Fig. 3. An example of frequency-place mapping in (a) 

clinical processors, and (b) using proposed mapping 

strategy (figure not to scale).  
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Condition#2: True CI position, default filter condition: In 

this condition, we try to mimic the actual listening 

mechanism of CI users when using the default analysis 

filters. Default ACE filterbanks were used at analysis stage, 

whereas filterbanks derived from DVF curves were used at 

the synthesis stage to simulate the perceived sound.  

Condition#3: True CI position, proposed filter condition: 

Custom filter-banks were designed according to each 

individual’s DVF curve data using the methods from Sec. 2. 

These custom filterbanks were used as analysis filters and 

filterbanks derived from DVF curves were used as synthesis 

filters to simulate the perceived sound. 

Condition#4: True CI position, exactly matched filter 

condition: Analysis and synthesis filter-banks were chosen 

identically from the DVF curves. 

     Speech recognition was assessed using four sets of test 

materials, namely vowels, consonants, speech in quiet, and 

speech at +10 dB signal-to-noise ratio (SNR) with speech-

shaped noise. Vowel stimuli consisted of 12 medial vowels 

presented in /h/-vowel-/d/ context [21].  Consonant stimuli 

consisted of 20 medial consonants presented in /a/-

consonant-/a/ context [22]. Recorded IEEE sentences [23] 

were used as the stimuli for testing speech understanding in 

quiet and noise. Each listener was presented 20 sentences 

per test condition. Each test material was presented in both 

male and female voices, with test material order for all test 

conditions randomized across subjects. The acoustic stimuli 

were presented in free field at 65dB sound pressure level 

from a single speaker in a double-wall sound booth. 

Performance was measured acutely without any training; 

however, participants were given glimpses of vocoder-

processed stimuli before the start of each test material. In 

order to avoid any learning effects, no repetitions were 

allowed in any test condition. 

 

 3.2. Results 

Figure 4 shows mean speech understanding scores for each 

of the four mapping conditions with different test materials. 

Consistent with findings from previous studies, the results 

here indicate peak performance with ideally matched 

condition (Cond#1) (i.e., full range of acoustic information 

is matched exactly across analysis and synthesis filter 

banks). However, since Cond#1 is not generally achievable 

in real life, the aim of the study was to compare performance 

of Conds #3 and #4 against Cond#2, which simulates results 

that are achieved with the current clinical process. Results 

indicate Cond#3 generally performed equal or better in all 

tests as compared to Conds #3 and #4, with largest 

improvement seen for speech in quiet (+15% improvement) 

followed by vowel identification (+7% improvement).  

     Repeated-measures analysis of variance (ANOVA) was 

also performed to assess the effects of mapping conditions 

and speech material on the speech understanding scores with 

an  factor set to 0.05. Subjects were considered a random 

factor, while mapping conditions and speech material were 

used as the main analysis factors. ANOVA revealed a 

significant main effect of mapping condition 

(F[3,27]=37.894, p<0.001) and test material 

(F[3,27]=97.391,  p<0.001) on speech understanding scores. 

The interactions between mapping condition and test 

material were statistically significant (F[9,81]=12.424, 

p<0.001). A Post-hoc Bonferroni test for pair-wise 

comparisons between the four mapping conditions indicated 

statistically significant improvement with Cond#3 as 

compared to Cond#2 for speech understanding in quiet 

(p=0.009) (no difference was observed for other 3 test 

materials).  

 

4. CONCLUSION 

While there have been outstanding advancements in 

cochlear implant signal processing, the lack of knowledge on 

spatial relationship between electrodes and stimulation 

targets within the cochlea has resulted in a generic fixed 

frequency mapping for all implantees with the hope that CI 

users will “learn” to interpret the incorrect frequency 

locations of stimulation. The proposed solution, for the first 

time, incorporates a CT imaging strategy to improve the CI 

signal processing by optimizing frequency-to-place mapping 

based on individual’s cochlear physiology and location of 

electrodes. The purpose of this study is proof-of-concept 

validation before clinical testing with implant users. Acute 

results with 10 normal hearing subjects show an 

improvement of +15% in speech recognition indicating that 

user customized frequency maps can potentially aid in 

achieving higher asymptotic performance and possibly faster 

adaptation to electric hearing. 
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Fig. 4. Percentage correct scores for consonant and vowel 

recognition and speech understanding in quiet and noise 

with respect to mapping Conditions #1, 2, 3, 4 (from Sec. 

3.1). Error bars represent standard error of mean.  
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