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ABSTRACT

In this paper, we use image processing techniques on the speech
spectrogram to perform speech phoneme segmentation. The pro-
posed method relies solely on visual cues on the spectrogram, with-
out the need for language-specific training data. The results are eval-
uated on the TIMIT corpus, and compared to other unsupervised
speech segmentation techniques, with comparable results obtained.
We also fuse the results with those obtained by hidden Markov mod-
els (HMM) and HMM-based forced alignment to investigate if image
features can provide an additional feature representation for speech
processing tasks. With the fusion, up to 10% absolute improvement
in segmentation accuracy over the HMM baselines can be obtained.
Results are promising and suggests a strong potential for image-
based features applying to speech processing.

Index Terms— speech processing, spectrogram processing, im-
age processing, speech segmentation, low-resource languages

1. INTRODUCTION

Speech parameters currently being used are mostly spectral features,
such as mel frequency cepstral coefficients (MFCC) and perceptual
linear predictive (PLP) coefficients. These features are proven to be
effective as a form of speech representation as they are derived from
modeling of the human vocal tract.

In this paper, we explore an alternative view of representing
speech, by investigating the use of visual features to perform speech
processing. This work is motivated by the fact that human spec-
trogram readers are able to perform phoneme labeling from spec-
trogram images as proven by experiments done in [1], [2], [3] and
[4]. These studies suggest that visual cues can provide additional
information if they are properly used in current speech processing
applications. More often than not, speech researchers visualize the
correctness of their algorithms using spectrograms. Such visual in-
spections of the cues on the spectrogram provide an effective way of
speech analysis, which further confirms that visual cues exist on the
spectrograms to enable such analysis to be done.

If such image features can be reliably extracted, it can provide an
additional feature representation to improve the accuracy of speech
processing tasks. More importantly, if such features can be encoded
as heuristics without the need for data-driven training, they will
deem valuable for the processing of low-resource languages. One
might argue that human spectrogram readers need to go through ad-
equate training in order to recognize phonemes from spectrograms.
However, many early research studies ([5], [6], [7], [8] and [9]) have
suggested that these visual cues can indeed be encoded by rules and
used to perform phoneme classification. These experiments however

were done on small test sets, and the features were either manually
extracted, or by using simple peak selection on the spectrograms.

To automate the extraction of visual features from image spec-
trograms, image processing techniques for phoneme recognition
have been used as described in [10], [11], [12], [13], [14] and [15].
The effectiveness of these methods has been shown on restricted
tasks, such as stops or vowels identification, and digit classification.
However we wish to use image processing techniques to perform
phoneme segmentation which is essential for many tasks in speech
processing, such as model training and speech synthesis. Ironically,
the state-of-the-art segmentation algorithms often involve the use of
hidden Markov models (HMMs) [16] to perform phoneme recog-
nition as discussed in [17] and [18]. This implies that manually
transcribed and/or time-labeled data needs to be available to build
the HMMs in order to perform segmentation. Obtaining manually
transcribed training data is extremely labor intensive, and may not
be available for low-resource languages.

The proposed framework in this study overcomes the need
to train speech models to perform speech segmentation similar in
essence to those described in [19], [20], [21], [22] and [23]. By per-
forming image processing on the spectrogram, phoneme boundaries
in the TIMIT corpus are detected and compared to the manually
transcribed ground truth and compared with the phoneme bound-
aries obtained by other unsupervised phoneme boundary detection
methods. Finally, we fuse the results of the proposed algorithm
with that achieved by HMM and show that image features on the
spectrogram provides additional information and can be harnessed
to improve current speech technologies.

The rest of the paper is organized as follows. In Section 2, details
of the algorithm are provided with discussion of the experimental
results provided in Section 3. Finally, the conclusion and future work
are presented in Section 4.

2. SEGMENTATION ALGORITHM

The algorithm starts with the generation of an image representation
of the speech signal, which is the time-frequency speech spectro-
gram. With the intuition that locations on the spectrogram with sig-
nificant intensity changes along the time-axis indicates a possible
phoneme change, we detect for such differences to locate possible
phonetic boundaries. As there could be spurious detections, the algo-
rithm performs a post processing to select the best set of boundaries
by using a minimum distortion reduction criterion.
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2.1. Spectrogram Generation

The time-frequency spectrogram is obtained by performing short-
time Fourier transform (STFT) [24] on the speech signal using a
window size of 128 samples with a 64-sample overlap size. 128
samples correspond to an 8 ms window when STFT is applied to
TIMIT sequences sampled at 16000 Hz. In order to preserve the fre-
quency details, the number of FFT bins is set to 256. The logarithm
is then applied on the power spectral density (PSD) matrix, where
each column corresponds to the PSD for each window, from which
we obtain the image representation of the signal.

Observing the spectrogram image generated, as illustrated by the
top image in Fig. 1, the contrast of the formants with the background
is not very distinct, which can make boundary detection challenging
at a later stage. Therefore, we perform a contrast stretching and
histogram equalization [25] of the whole spectrogram. This is com-
monly done in image processing to improve the contrast of images.

In addition to enhancing the contrast, we also perform median
filtering on the image, which is usually used in image processing to
remove salt-and-pepper noise [26]. As seen from the top image in
Fig. 1, regions of silence does not appear as smooth regions, but
as grainy patches of gray regions. If not properly dealt with, these
regions will generate spurious detections creating high false alarms.
Therefore, a median filter with a window size of B is applied to
each column of the image to remove such noises, with the effect
of B discussed in Section 3. The filtering is not done row-wise so
as not to blur the phoneme boundaries which we eventually wish
to detect. Fig. 1 shows an example of the spectrogram before and
after enhancement. Comparing the top and bottom images, regions
of silence now appear as white smooth regions, and the formants
appears stronger after enhancement.

2.2. Boundary Detection

To detect for possible phoneme boundaries, the algorithm searches
for significant intensity changes along the time-axis in three sub-
bands. To avoid getting many spurious detections, a window of 5
columns is used to do frame differencing. We compute d(s, c) which
is the difference of each sub-band s at column c as follows,

d(s, c) =

r2∑
r=r1

5∑
w=1

|I(r, c− 5 + w)− I(r, c+ w)|

(r2 − r1 + 1)× 5
(1)

where I refers to the 2-D spectrogram, and r1 to r2 defines the rows
in sub-band s of interest.

The first sub-band, s1, is defined as 1 to (0.1× h), where h refers
to the image height. The voicing bars [28] are usually detected in this
sub-band. The second sub-band, s2, is defined as (0.1 × h + 1) to
(0.6× h), and is where formants of vowels can be detected. The last
sub-band, s3, refers to (0.6 × h + 1) to h. The high frequencies of
the fricatives are frequently found in this region. This is illustrated
by the bottom image in Fig. 1.

Finally, we compute the image difference profile, D, in Eq. (2).

D(c) = max(d(s1, c), d(s2, c), d(s3, c)) (2)

D only records the sharpest intensity change that happens in any
of the sub-bands. The peaks in D are found and peak locations whose
values are above f× mean(D) are chosen as boundary locations,
where the effect of f is discussed in Section 3.

Fig. 1. (Top) Spectrogram before enhancement. (Bottom) Spectro-
gram after enhancement and divided into the three sub-bands.

2.3. Boundary Selection

Spurious boundaries detected above due to noise are removed here
by using a minimum distortion reduction criterion. Given a segment
on the image, the distortion E, of this segment is given by Eq. (3),

E =

m∑
r=1

n∑
c=2

|I(r, c)− I(r, c− 1)|

m× (n− 1)
(3)

where m and n refer to the number of rows and columns in spectro-
gram I. Essentially, E gives the amount of intensity change accumu-
lated in the segment. Intuitively, if the segment does indeed contain
a boundary, selection of this boundary would split the image into
two portions, left and right of the boundary. The accumulated distor-
tion of the two resultant segments would be lesser than the original
segment since the boundary, which is the biggest contributor to the
distortion measure, is removed and does not contribute to E.

With this intuition in mind, the boundary selection process starts
with the entire image being one segment. The best boundary from
the set of detected boundaries is selected and the image is split into
two segments. The algorithm is repeated on the newly split seg-
ments and the entire process iterates until no more boundaries can
be selected from the current set of segments.

There are three cases whereby no more boundaries can be se-
lected from a segment:

• no more detected boundaries on the segment, or

• the resultant distortion reduction is less than the specified
threshold, set to 0.0025 in our algorithm, or

• the selected boundary would result in a segment smaller than
the minimum width, set to 5 here to coincide with the window
length used in Section 2.2.

Once the boundary selection process terminates, the selected set
of boundaries will give the final segmentation of the spectrogram
into its phoneme segments.

3. EXPERIMENTAL RESULTS AND DISCUSSIONS

3.1. Image-based Phoneme Segmentation

The proposed algorithm, which we term ISeg, was used to segment
the TIMIT testing set consisting of 1344 utterances. The results were
compared against the results of [20] using the same set of evaluation
metrics, correct detection rate (CDR), over-segmentation (OS) and
false alarm (FA), defined in Eqs. (4) to (6) below:
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CDR =
Number of correct boundaries

Number of true boundaries
× 100%, (4)

OS =

(
Number of boundaries found
Number of true boundaries

− 1

)
× 100%, (5)

FA =

(
1− Number of true boundaries found

Number of boundaries found

)
× 100%, (6)

where a correct boundary was defined as being at most 20 ms from
a true boundary. Performance of the segmentation algorithm was
given in Fig. 2. The curves were obtained by first arbitrarily fixing
the peak selection threshold f described in Section 2.2 to 0.5 and
varying the median filter window size B, which affected the level of
details preserved and therefore the number of boundaries detected.
The best window size was found to be and fixed at 8. We then vary
f .
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Fig. 2. (Top) OS plotted against CDR for ISeg. (Bottom) FA plotted
against CDR for ISeg.

The results obtained were very similar to those found in [20] and
[22], with slight degradation, and were tabulated in Table 1. As only
the CDRs obtained at 0% OS were provided in both [20] and [22],
we could only compare our results based on that.

The best operating point was found whenB = 8 and f = 0.625,
with CDR at 78.07%, OS at 7.74% and FA at 27.54%, which would
be used for subsequent comparisons. Although the proposed method
did not outperform the existing unsupervised methods, we were still
encouraged by the results as it shows the potential for image features
on spectrograms to be applied to speech processing tasks. With sim-
ple image processing techniques applied to the spectrogram, the al-
gorithm proved to attain a similar performance to other unsupervised
segmentation methods.

Method CDR
MMC [20] 76.0%
RD-IDA [22] 77.5%
Proposed Method - ISeg 75.0%

Table 1. Comparison of ISeg with other unsupervised segmentation
algorithm at OS = 0%.

3.2. Fusion with HMM-based Segmentation

Next, we fused the results of ISeg with those obtained by HMM
phoneme recognition, HMM-rec, and those obtained by HMM
forced alignment, HMM-fa, to investigate if fusing our results with
existing methods applied on spectral features could give rise to extra
performance gains. If an accuracy gain was indeed observed, it
would imply that visual cues could provide an additional feature to
improve the performance of speech processing tasks.

To obtain HMM-based segmentation, the HTK toolkit and the
TIMIT training set consisting of 4120 utterances were used to train
context-independent HMMs for the 61 phonemes in the TIMIT cor-
pus. It was believed that context-independent HMM gives better
segmentation results as investigated in [17]. Each HMM contained
5 states with left-to-right transitions, and each state contained 16
Gaussian mixture components. The HMMs were then used to obtain
HMM segmentations for HMM-rec and HMM-fa.

We subsequently performed a simple fusion of the results by first
comparing all the boundaries found in ISeg with those obtained by
HMM-rec or HMM-fa. Identical boundaries were ignored and the
remaining boundaries discovered by ISeg were fused into the bound-
ary set discovered by HMMs. The results were indicated by (raw)
in Table 2. This simplistic fusion obviously generated many false
alarms as detections that were one column apart were also consid-
ered as different boundaries, which was definitely unrealistic since
no segments can be only one column wide.

In addition, we did not double count true detections in our eval-
uation. If a boundary had been determined to be less than 20ms from
a true boundary, a match for the true boundary had been fulfilled and
accounted for in the true detection count. Even if another detection
that was within 20ms from the same true boundary was found, the
second detection will be calculated as a false alarm. This explains
the extremely high false alarm counts for the (raw) results. The pur-
pose of the results however is to highlight the improvement in CDR
that fusing results from ISeg can bring out.

Table 2. Comparison of results obtained from fusing ISeg with
HMM baselines, against HMM-rec and HMM-fa.

Method CDR(%) OS(%) FA(%)
ISeg 78.07 7.74 27.54
HMM-rec 84.57 7.73 21.50
HMM-fa 86.60 0.00 13.40
ISeg-HMM-rec (raw) 94.90 104.24 53.53

pruned 89.75 33.98 33.01
strict (f=0.75)+pruned 88.98 27.17 30.03

ISeg-HMM-fa (raw) 96.28 97.04 51.14
pruned 91.85 30.25 29.48
strict (f=0.75)+pruned 91.29 23.06 25.82

As observed from Table 2 above, when we fused the results of
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HMM-rec with ISeg, the achieved CDR was 94.90%, which was
about 10% higher than that obtained by HMM-rec alone. Similarly,
when the results of ISeg was fused with those from HMM-fa, close
to 10% improvement of CDR was also observed. This confirmed
our hypothesis that visual cues on the spectrogram indeed provided
an additional feature representation to existing ones for speech pro-
cessing. Comparing the detections obtained by ISeg with that ob-
tained by HMM in Fig. 3, it could be observed that the boundaries
obtained by ISeg in Fig. 3(c) snap closer to the true phoneme bound-
aries that are shown in Fig. 3(b). The ones obtained from HMM-rec
in Fig. 3(d) are very often a few columns off the true boundaries. Vi-
sual cues therefore gave a more accurate segmentation of phoneme
boundaries which contributed to the improvement of the CDR in the
fused results. Note also in Fig. 3(a) that there was a distinct noise
spike exhibited as a black vertical line, which we highlighted in a red
box. ISeg did not generate a false detection of it as another segment
due to median filtering of the spectrogram.

In other words, ISeg was able to overcome transient impulse
noise spikes in the speech with suitable filtering. However, look-
ing at the output of HMM-rec in Fig. 3(d), there is a false detection
in that same segment. ISeg, of course, has its drawbacks. At a fur-
ther observation of Fig. 3, we noticed the series of miss detections
in the middle portion of Fig. 3(c). Comparing to the ground truth
in Fig. 3(a) and Fig. 3(b), that portion corresponds to a sequence of
vowels and approximants which exhibit themselves very similarly in
spectrograms as discussed in [27]. Therefore, it makes it very chal-
lenging to find vowel-vowel or approximant-vowel boundaries as no
sharp transitions on the image spectrogram could be observed. Per-
haps ISeg would be more effective in segmenting syllabic languages
with clear consonant-vowel-consonant structures.

Despite the improvement in CDR brought about by fusion, the
simplistic merging of the two set of boundaries generated too many
false alarms to deem the performance improvement useful. There-
fore, we removed some of those unrealistic false alarms by running
a sliding window with a size of 5 columns through all the detected
boundaries. If the window contained more than one boundary point,
we selected the one with the highest intensity change at the bound-
ary. If the intensity change at this selected boundary was less than
a threshold τ , we rejected this selected boundary as it did not corre-
spond to a location with high intensity changes, and should thus be
a false alarm. τ is set to 3 here. This eradicates segment boundaries
that are less than 5 columns from each other and the results of such
a false alarm pruning is illustrated in Fig. 3(e).

The performance of such a pruning strategy on the evaluation
metrics are shown in rows indicated by pruned in Table 2. This
post-processing helped to remove some of the false alarms, but still
a significant amount remained. This suggests that a better enhance-
ment step should be performed on the spectrogram so that the ex-
tracted features are more invariant to spectral changes and thus these
spurious detections could be reduced. A better fusion method is also
required to exploit the advantages of both ISeg and HMM without
generating too many false alarms.

If a slight loss in CDR can be tolerated, a stricter version of
ISeg can also be used. In rows indicated by strict (f=0.75), pruned
in Table 2, the peak selection threshold in ISeg was set to f=0.75,
higher than the optimal f=0.625 as discussed previously. The results
of this configuration was fused with HMM segmentation and false
alarm pruning was also performed. A slight degradation in CDR
was observed, but both OS and FA were lowered with this setup.
The CDR now was still above that achieved by ISeg or HMM alone.

(a) Spectrogram from Wavesurfer

(b) Ground truth segments labeled in black

(c) ISeg detected labels in blue. f=0.625

(d) HMM-rec detected labels in blue

(e) Fused results of ISeg and HMM-rec with false alarm pruning

Fig. 3. Comparison of segment boundaries obtained from ISeg and
HMM-rec

4. CONCLUSION AND FUTURE WORK

In summary, we have presented an image processing approach to
speech phoneme segmentation. Results are comparable to other
unsupervised phoneme segmentation methods which proved that
image-based feature can be a possible alternative to phoneme seg-
mentation. We also fuse the results of the proposed segmentation
algorithm with the HMM results and observed an improvement to
the segmentation accuracy, which proves that image features does
contain additional information that can be harnessed to aid the
performance of speech processing tasks.

In the future, we wish to explore better image features that are
more invariant to spectral variations in order to reduce the false
alarms. Different kind of spectrogram representations can also be
studied. Fusing the results of the proposed algorithm with other
language-independent detectors is also a possible future direction.
One such detector would be the manner and place attribute detector.
As speech research focus increasingly on minority languages, it is
believed that language-independent speech processing techniques
would become more important. Since the image processing frame-
work described here is free of any language resources, we hoped
that it can contribute to low-resource language processing.
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