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ABSTRACT

We study a distributed node-specific signal estimation problem
where the node-specific desired signals and/or the sensor observa-
tions can have partially-overlapping latent signal subspaces. First,
we provide the minimum number of linear combinations of observed
sensor signals that each node can broadcast to still let all other nodes
achieve the network-wide Linear Minimum Mean-Square Error
(LMMSE) estimate of their node-specific desired signals. Later,
for a fully-connected wireless sensor network, we derive a dis-
tributed algorithm that, under some settings, allows each node to
achieve the LMMSE estimate of its node-specific desired signals
by broadcasting the smallest number of signals. Unlike the exist-
ing algorithms, the proposed algorithm deals with the problem of
partially-overlapping node-specific interests and incomplete observ-
ability of all latent sources at the nodes. Finally, the effectiveness of
the proposed technique is shown through numerical simulations.

Index Terms— Distributed signal estimation, wireless sensor
networks, distributed compression

1. INTRODUCTION

In a wireless sensor network (WSN), the estimation of a set of pa-
rameters or signals is traditionally performed in a central unit which
collects all the sensor signal observations of all the nodes in the net-
work. To reduce energy consumption, and to improve robustness and
scalability, more recent approaches (e.g. [1]-[2]) rely on distributed
algorithms based on in-network processing of the sensor signals.

In most distributed estimation problems, it is generally assumed
that the nodes in a WSN have the same interest, i.e. the estimation of
a global vector of parameters or a network-wide signal (e.g. [1]-[5]).
However, motivated by applications such as speech enhancement in
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acoustic sensor networks [6] or cooperative spectrum sensing in cog-
nitive radio networks [7]-[8], special attention is being paid to more
general distributed estimation problems where the nodes have differ-
ent but overlapping estimation interests.

In the growing literature on node-specific estimation problems
in adaptive networks, works such as [9] apply consensus strategies
to solve node-specific parameter estimation (NSPE) problems where
there are parameters of common interest to a subset of nodes in the
network. For scenarios where there are parameters of local interest to
anode in addition to parameters of common and/or network-wide in-
terest, there are also several NSPE algorithms based on adaptive fil-
tering techniques under an incremental [10] or a diffusion [11] mode
of cooperation. Other recent works solving different NSPE problems
based on adaptive filtering techniques can be found in [12]-[13].

Rather than NSPE problems, we consider node-specific signal
estimation (NSSE) problems, which are fundamentally different and
require different techniques to solve them (see [6] for a detailed com-
parison). In particular, we focus on linear NSSE techniques that es-
timate the samples of a node-specific desired signal by performing a
filter-and-sum operation on all the sensor signals in the WSN. For a
fully-connected and a tree network, the authors in [14] and [15] pro-
pose a distributed adaptive node-specific signal estimation (DANSE)
algorithm that significantly reduces the communication bandwidth,
while still letting each node achieve the network-wide LMMSE esti-
mate of its node-specific desired signals. To do so, these distributed
algorithms consider a fully-overlapping NSSE (FO-NSSE) problem
where (a) all node-specific desired signals fully span the same latent
low-dimensional signal subspace and where (b) all nodes observe all
the latent sources in their sensor signals. However, when one of these
assumptions does not hold, convergence of the DANSE algorithm to
the network-wide optimal solution is not ensured [16]. Furthermore,
for such a scenario, it is rather unclear how many compressed signals
have to be broadcast and how the optimal compression rules can be
found to let all of them achieve the node-specific LMMSE estimate.

Here, we consider a partially-overlapping NSSE (PO-NSSE)
problem where the latent signal subspaces of the node-specific de-
sired signals are only partially overlapping and/or where the nodes
do not observe all latent sources. To do so, we first show the num-
ber of linearly independent signals that every node should at least
broadcast to let all nodes achieve the LMMSE estimates of their
node-specific desired signals as if they had access to all sensor sig-
nal observations of the network. This number can be viewed as
the linear compression bound to still obtain network-wide LMMSE
estimates. However, the proof does not describe how the aforemen-
tioned bound can be achieved in practice. Nevertheless, we provide
a distributed algorithm where, under some settings, all nodes achieve
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the network-wide LMMSE estimates of their node-specific desired
signals by broadcasting the number of signals established by this
bound. Unlike the DANSE algorithm, the proposed algorithm has
a guaranteed convergence in PO-NSSE problems. Finally, some
numerical simulations illustrate the effectiveness of the algorithm.

2. PROBLEM FORMULATION

We consider a WSN with IV nodes that are randomly deployed over
some region in which a set of ) complex-valued and mutually un-
correlated latent source signals, {s; } j—1, are generated, in addition
to background noise. For instance, in Fig. 1 we plot a network with
N = 5 nodes and Q = 2 latent source signals generating s; and
s2. At each time ¢, each node k collects an observation yy[t] of an
Mj.-channel signal yi. Each yi . [t], withm € {1,2,..., My}, of
¥k [t] corresponds to the observation collected by the m-th sensor of
node k at time ¢. We assume that all sensor signals are ergodic and
stationary in short term at least, in which case the theory should be
applied to finite signal segments. Moreover, we will omit the time
index when referring to a signal, and we will only write it when re-
ferring to a specific observation of the signal.

From the set of sensor signals {yk}ff:h each node k aims at es-
timating a node-specific desired signal d, which consists of a linear
mixture of the latent source signals. To make this more concrete, we
define the (Q-channel signal s in which all () signals s; are stacked,
ie., s = col{{s; }?:1}. Modelling measurement noise at node k,
we also define ny as a zero mean noise component that is statisti-
cally independent of s and is possibly correlated to ng with k # £.
Then, the signals observed by node k are described by

Yt = Brs +nyg @)

with By, an unknown M, x @ steering matrix to the M}, sensors of
node k. Due to the attenuation properties, in practice a node k only
observes a latent source s; if it is located within its area of influence,
which is denoted by the ordered set of node indices B;. Thus, it may
happen that a node k only observes Qi out of ) latent sources, in
which case the matrix By, contains zero-columns. Additionally, the
node-specific desired signal dj, is given by

dp = al's )

where the superscript H denotes the conjugate transpose operator
and where a;, is a mixing vector that specifies the interests of node
k. Although a multi-channel desired signal could be considered for
each node k, for the sake of an easy exposition, we will assume that
dy, is a single-channel signal. In a practical scenario, note that a node
k may not be interested in estimating a filtered version of all latent
source signals, i.e., the vector a; may contain zeros at the entries cor-
responding to sources in which node k is not interested. As a result,
a latent source is not necessarily within the interest of all nodes of
the network. We will use the set .A; to denote the set of nodes inter-
ested in estimating a linear mixture including the latent source signal
s;j. Note that the sets {.A; }]Q:l are not necessarily related to the sets

{B; }?:1. Nonetheless, there might exist scenarios where dj con-
sists of a linear combination of a subset of the latent source signals
observed by node k as they impinge on one of its sensors, called the
reference sensor. In that case, a; would be composed of entries of a
column of B and A; C B;. For instance, for the network in Fig. 1
all nodes that observe latent source signal s1, i.e., B1 = {1,2, 3,4},
are interested in estimating s1. As a result, A; = ;. On the con-
trary, within the set of nodes that observe s, i.e., B2 = {2, 3,4, 5},
only the nodes in A2 = {3,4,5} C Bs are interested in s2.

Fig. 1. WSN where nodes have partially-overlapping interests and
where the nodes observe different latent source signals.

Without making any assumption on the probability distributions
of the involved signals, we consider the following node-specific
LMMSE estimator' to estimate d,

Wy, = argmin {Ji(wg)} = argmin {E | de —wi'y HQ} (3)
Wy Wi

where wy, is an unknown complex M x 1 vector and where y is the
M -channel signal in which all y, are stacked with M = Z]k\’:1 My,
ie.,y = col{{yx}A_,}. Itis assumed that the node-specific desired
signals are unknown and, possibly, different for any two nodes k and
£ with k # ¢, i.e. di, # de. In the case where dy, is a linear mixture
of the latent source signals as they impinge on the reference sensor
of node k, the idea of (3) is to perform a denoising of the sensor
signals, while preserving the spatial information (the local mixture
of the latent source signals as observed in the reference sensor) at
each node. This could be important, e.g. for directional hearing in
hearing aid applications [17], or when the denoising step is followed
by a localization procedure [18].

Assuming that the correlation matrix R, = E{yy"} is full
rank, which is generally satisfied due to sensor noise, the unique
solution of (3) is [19]:

Wi = Ryy ryd, )

where ryq, = E{ydi}. Since the signals are assumed to be er-
godic, Ryy can be estimated directly from the sensor signal obser-
vations by time averaging. Since we assume that the signal dj, is
unknown, we will assume that ry4, is estimated indirectly based on
the sensor observations of y. For instance, if the signals {dk}ffz1
have an ON-OFF behavior (as it is the case for, e.g. speech signals),
then the nodes are able to observe noise-only segments in their sen-
sor signals. This allows to compute the noise covariance, from which
ryq, can be estimated as long as a, corresponds to a column of B
for some £ € {1,2,..., N} (see [14] and [17] for further details).

To find the solution given in (4) at each node k, in principle,
each node k needs to have access to all the M sensor signals in y.
Therefore, each node would need to broadcast all observations of its
Mj.-channel signal y; to the other nodes of the network. Alterna-
tively, to increase the energy efficiency, the nodes can broadcast lin-
early compressed versions of their sensor signal observations. When
determining the linear compressors that let each node k find (4) in
a distributed fashion, the existing works (e.g. [14]-[15]) consider a
FO-NSSE problem where each node k can observe all latent source
signals and has a desired signal dy, that consists of a linear mixture of
all the latent source signals as they impinge on its reference sensor.
Instead, this paper studies how many and which signals should be
broadcast by each node in a PO-NSSE problem where some nodes
may not observe all latent source signals (i.e., B; may contain zero
columns) and where each dj;, may only consist of a mixture of a sub-
set of the latent source signals (i.e., the vector a; may contain zeros).
It is noted that the DANSE algorithm in [14]-[15] cannot deal with
this kind of scenarios [16].

t is noted that we consider complex variables, hence this can be viewed
as a frequency-domain implementation of a multi-channel linear filtering op-
eration in the time domain.
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3. MINIMUM NUMBER OF BROADCAST SIGNALS

From W, given in (4), we can check that the centralized LMMSE
estimate of the node-specific desired signal dy, is expressed as

N
dy=Wi'y=> Wiy )
=1

where Wy, ¢ denotes the sub-vector of Wy, that is applied to y,. To
be able to use all the sensor signal observations and find a?k in a
distributed fashion, we consider algorithms where each node broad-
casts linearly compressed observations of its Mj-channel signal y.
In this case, each node has access to its own sensor signal observa-
tions, yx, as well as to a compressed version of the sensor signal
observations at the other N — 1 nodes, which are stacked in

T T T T
Z_ = [Zl 21241 ZN] (6)

where z; = CHy, and where C; is a M, x L, compression matrix
with Ly < M and £ # k.

For a FO-NSSE problem, previous works (see e.g. [14]-[15])
have designed algorithms where the observations to be broadcast by
each node k can be linearly compressed by a factor My /Ly where
Ly = min(My, Q) without any loss of optimality. An intuitive rea-
son why each node k£ should broadcast observations of () signals
might be because zj, should fully capture the ()-dimensional signal
subspace spanned by the node-specific interests. However, it is not
clear if this intuition is correct. This unsolved question is even more
uncertain if we consider the PO-NSSE problem of Section 2, where
node k observes Qi out of () latent source signals and/or where the
node-specific interests do not share the same latent signal subspace.
For instance, since the complete ()-dimensional latent signal sub-
space is not captured anyway by the sensor signals of node k£ when
By, is rank deficient, one might be tempted to think that node k only
needs to broadcast observations of a (Q;-channel compressed signal
zj,. However, this is not generally true as it can be deduced from the
following theorem (the proof is omitted due to space constraints).

Theorem 1. Define N as the space of the M -channel noise signal
n in which all ny are stacked. Also assume that the M x @ stacked
matrix B = [BlT BI... BJT\;]T is full rank with M > Q. Then,
to be able to achieve the optimal LMMSE estimate (5) at each node
k€ {1,2,...,N} for any possible n € N, each node k has to
broadcast observations of at least

LZ = min{Mk, Pk} (7)
linearly independent signals where
P, =rank(A_;) < Q (8)

with A_; = [al ag -+ Ap_18kt+1 c aN]. Furthermore, LY, is
a tight bound, i.e., if node k broadcasts observations of less than
LY signals, then the LMMSE estimate (5) cannot be achieved at all
other nodes for any possible n € N,

A surprising result of Theorem 1 is the independence between
the number of latent source signals observed by node k, i.e., Q, and
the number of signals Lj, of which observations have to be broadcast
by node £ to let all other nodes achieve the LMMSE estimate of their
node-specific desired signals. According to Theorem 1, note that
even if node k observes, e.g., only one of the latent signals, it should
still broadcast observations of at least an Lj,-channel signal to ensure

optimality in all the NSSE problems. This can be explained by the
fact that the noise may be correlated across different nodes. In this
case, node k£ may help other nodes to achieve better estimates by
providing good noise references, even if node k£ does not observe all
the desired latent source signals that are within the interest of the rest
of the nodes. For example, although node 5 observes one of the two
latent source signals present in the network of Fig. 1, if there is no
prior knowledge about noise covariance matrix, it needs to broadcast
observations of at least Ps = 2 signals to ensure optimality in all
other NSSE problems.

Additionally, Theorem 1 shows the optimality of the compres-
sion factor M}, /min{ My, @} applied by each node k when imple-
menting the algorithms derived in [14]-[15] for a FO-NSSE prob-
lem where P, = @ holds. For the more general PO-NSSE prob-
lem where a node k£ may only be interested in some of the latent
source signals and/or may only observe @ < () latent source sig-
nals, it may still occur that P, = (), in which case node k should
still broadcast observations of () signals to ensure optimality in all
other NSSE problems. For instance, this is the case of the network
in Fig. 1. However, none of the previous settings may not occur. As
an example, consider a network where () = 3 latent source signals
are observed by 5 nodes equipped with 4 sensors. If nodes {2,3,4,5}
are only interested in s3 and node 1 is interested in estimating a lin-
ear mixture of all the 3 latent sources, we can check that P, = 1
and P, = 2 for k # 1. In this case, according to Theorem 1, the
compression factor My, /min{ My, Q} is not necessarily optimal.

4. DANSE ALGORITHM FOR PO-NSSE

Here, we briefly describe a distributed algorithm that solves a PO-
NSEE problem of Section 2. Without losing optimality in any of
the NSSE problems, the algorithm compresses the signals yj, into
(Q-channel signals, which means that the algorithm broadcasts the
minimum number of signals when P, = @ for all nodes (see Theo-
rem 1). However, constructing an algorithm that achieves the bound
L7 when P, < @ for some k, remains an open problem. From now
on, to avoid straightforward solutions, we will assume that M}, > Q.
Our starting point is the DANSE algorithm that solves a FO-

NSSE problem in a fully connected network [14]. In summary,
this algorithm allows each node to obtain the LMMSE estimate of
a node-specific ()-channel signal dj, from linearly compressed ob-
servations of other nodes (note that this is a generalization of (2) for
multi-channel desired signals). To do so, the following optimization
problem is solved at each iteration ¢ > 1

i -

Gy

2
argmin EHdk - [ Wi ‘ GI . 19k ©

Wik, Gk, —k

where k = mod(i — 1, N) + 1, Gg,—r = col{{ G, } =101 } and
Vi = col{yx,z’ } with zj, = [W}, .]"yy. Itis noted that W},
acts both as the compressor matrix Cy, at iteration ¢ and as a part of
the estimator of dy, i.e., the observations of the compressed signal
z.. that is broadcast by node k is also used in the estimation of dj, at
node k itself. Similar to (4), the solution of (9) is

{Wﬁl ] —R-!

TN e (4o

¥id
~ireiH oi 1H

where Rg: gi = E{y:[yi.]" } and Rgi a, = E{y;d; }. For fur-

ther details concerning the estimation of these second order statis-

tics, we refer to [14] and [17]. In the particular case of speech en-

hancement, note that the estimation of RS'}C ., Mmay require a multi-

speaker voice activity detection, e.g., using [21]-[22].
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To ensure that the estimates provided by the DANSE algorithm,
i i 17 i 7
d, = [Wkk] Y+ [Gk,—k] Z_k (1

converge to the LMMSE estimate ak = ka, where {7\Vk =
R;;Rydk, it is assumed that each node-specific signals dj, fully
captures the ()-dimensional latent signal subspace, i.e.,

dy :AkS (12)

with Ay, a full rank @ x () matrix. As stated in Section 2, only one
signal in dj might be of actual interest for node k, while the other
signals in dj can be seen as auxiliary signals that allow to capture
the entire ()-dimensional latent signal subspace.

In many practical situations, node k& may observe ) out of @
latent source signals with @, < Q. For instance, in Fig. 1, nodes
{1,5} only observe 1 out of 2 latent sources, respectively. In these
settings, if the node-specific signal dj, corresponds to a filtered ver-
sion of the latent source signals s as they impinge on the sensors
of node k, (i.e., Ay consists of @@ rows of Bg), (12) only holds
for a rank-deficient matrix Aj. In this case, the convergence of
the DANSE algorithm to the LMMSE estimates {dj}A_, cannot
be ensured and any possible convergence point can be shown to be
suboptimal [16]. Next, we will show how to overcome this difficulty.

Assuming that the non-zero columns in Ay are drawn from a
continuous distribution, the rank of A equals Qi almost surely.
Hence, from a signal xy, qir that consists of the desired component
of @, channels of the y 1, node k can almost surely capture Q) out of
the total () dimensions of the latent signal subspace. Fortunately, by
using a technique similar to the one employed in [17], the remaining
@ — Qi dimensions of the latent signal subspace can be captured
by a (Q — Qr)-channel signal X ina received from the other nodes
in the network. In particular, the entries of Xy, inq correspond to the
desired components in the signal(s) z with £ # k and /£ belonging
to a set 3; where node k is not included. In this way, although node
k may not observe all latent source signals, it can still verify (12) if
it re-defines its node-specific (Q-channel signal as follows

dj, = {Xf’d“} = Ajs (13)
Xk, ind

where A% equals a full rank Q x Q matrix, where one of the entries

in Xy, qir equals the node-specific desired signal dy, and where, for

pE {17277Q_Qk}’l€ {1727"'7QZ},
. . H
xhma(p) = [Wie(®)] Bes (14)

with x}, ;.4 (p) equal to the p-th entry of x}, ;,q and W7 (1) denot-
ing the I-th column of WZ}’ .. In order to have a full-rank matrix A%,
note that the indices £ and [ in (14) need to be suitably chosen.
Since each entry of x}'mnd is an output of the adaptive filter
W, () in another node ¢, the full-rank matrix A}, varies at each
iteration ¢ instead of being fixed, as it is considered for the conver-
gence of the DANSE algorithm derived in [14]. Despite this fact,
from the results in [17], it can be easily shown that the re-definition
of the node-specific signals as in (13) ensures the convergence and
optimality of the DANSE algorithm to the optimal LMMSE esti-
mates {dj, }~_, in the PO-NSSE problem of Section 2 (details omit-
ted). Additionally, from Theorem 1 we can prove that the proposed
strategy achieves the optimal compression rate My /L7 if P, = Q
for all k. Although the proposed algorithm still converges to the
optimal solution in a setting where P, < ), note that its factor of
compression is not optimal anymore. In this case, future research is
needed to design algorithms that achieve better rates of compression.
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Fig. 2. LS error for each node in the network of Fig. 1.

5. SIMULATIONS

In this section, we illustrate the effectiveness of the proposed algo-
rithm based on the network of Fig. 1, which consists of 5 nodes and
() = 2 latent sources. We have implemented a batch-mode version
of the algorithm, meaning that RS'}; i and RS'}; .a,,» are computed
over the full signal length, 7', in all iterations. Assuming that dj
consists of the mixture of the latent source signals that are observed
in a reference sensor of node k, the ()-dimensional latent signal sub-
space can be captured by each node if the node-specific desired sig-
nals in (13) are defined as follows. For eachnode k € {1,2,...,5},
the first entry of X, qir corresponds with dj, while the rest of the en-
tries equal the desired component in the signal observed by Qr — 1
auxiliary sensors of node k. Moreover, X} ;,q = [W55(1)] " B,s
and x4 ;4 = [Wég(l)] " Bys. Since nodes 2, 3, 4 can observe all
latent sources, notice that di, = xj, ai, for k € {2,3,4}.

The results of the computer simulations are provided in Fig. 2,
which shows the least-squares (LS) cost function of each node k,
ie. 1 |di[t] — [Wi(1)'])"y[t] |* with W (1)" equal to the first
column of Wi, as a function of the iteration index 4. For the sim-
ulations shown in Fig. 2, the matrices Wg’ . and Gg’_  have been
randomly initialized. We have also considered that 7' = 1000, that
the elements in By, (and hence also of aj) are generated by a uniform
random process on the unit interval and that each latent source signal
s; is a uniformly random process on the interval [-0.5,0.5]. More-
over, the noise component in each of the sensor signals has been in-
dependently generated according to a Gaussian distribution of zero
mean and variance chosen so that the Signal-to-Noise Ratio (SNR)
at each node ranges from 5 to 10 dB. As expected, in Fig. 2 the pro-
posed DANSE algorithm converges to the optimal linear LS solution
of a PO-NSSE problem where the nodes have partially-overlapping
interests and/or where some nodes do not observe all latent sources.

6. CONCLUSION

In this paper, we have addressed a generalization of the NSSE prob-
lem in a WSN where the nodes may have partially overlapping esti-
mation interests and/or may not observe all latent sources. We have
provided the minimum number of signals that at least have to be
broadcast by node k in order to allow the other nodes to achieve the
network-wide LMMSE estimates of its node-specific desired sig-
nals. Additionally, we have described a distributed algorithm that
achieves the network-wide solution of the considered NSSE prob-
lem by broadcasting the minimum number of signals per node under
some settings. Finally, the effectiveness of the proposed algorithm
has been illustrated through computer simulations.



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

[13]

(14]

[15]

7. REFERENCES

G. Mateos, 1. D. Schizas, and G. B. Giannakis, “Distributed re-
cursive least-squares for consensus-based in-network adaptive
estimation,” IEEE Transactions on Signal Processing, vol. 57,
no. 11, pp. 4583-4588, 2009.

A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat, and
A. Scaglione, “Gossip algorithms for distributed signal pro-
cessing,” Proceedings of the IEEE, vol. 98, no. 11, pp. 1847—
1864, 2010.

C. G. Lopes and A. H. Sayed, “Incremental adaptive strate-
gies over distributed networks,” IEEE Transactions on Signal
Processing, vol. 55, no. 8, pp. 4064—-4077, 2007.

F. S. Cattivelli and A. H. Sayed, “Diffusion LMS strategies for
distributed estimation,” IEEE Transactions on Signal Process-
ing, vol. 58, no. 3, pp. 1035-1048, 2010.

S. Chouvardas, K. Slavakis, and S. Theodoridis, “Adaptive
robust distributed learning in diffusion sensor networks,” IEEE
Transactions on Signal Processing, vol. 59, no. 10, pp. 4692—
4707, 2011.

A. Bertrand, Signal processing algorithms for Wireless Acous-
tic Sensor Networks, Ph.D. thesis, KU Leuven, University of
Leuven, Belgium, May, 2011.

P. Di Lorenzo, S. Barbarossa, and A. H. Sayed, “Bio-inspired
swarming for dynamic radio access based on diffusion adapta-
tion,” in IEEE 19th European Signal Conference, 2011. EU-
SIPCO 2011, 2012, pp. 1-6.

P. Di Lorenzo, S. Barbarossa, and A. H. Sayed, “Bio-inspired
decentralized radio access based on swarming mechanisms
over adaptive networks,” [EEE Transactions on Signal Pro-
cessing, vol. 61, no. 12, pp. 3183-3197, 2013.

V. Kekatos and G. B. Giannakis, “Distributed robust power
system state estimation,” [EEE Transactions on Power Sys-
tems, vol. 28, no. 2, pp. 1617-1626, 2013.

N. Bogdanovic, J. Plata-Chaves, and K. Berberidis, “Dis-
tributed incremental-based LMS for node-specific adaptive pa-
rameter estimation,” /IEEE Transactions on Signal Processing,

vol. 62, no. 20, pp. 5382-5397, 2014.

J. Plata-Chaves, N. Bogdanovic, and K. Berberidis, “Dis-
tributed diffusion-based LMS for node-specific param-
eter estimation over adaptive networks,” Available:
http://arxiv.org/abs/1408.3354,2014.

J. Chen and A. H. Sayed, “Distributed Pareto-optimal solutions
via diffusion adaptation,” in /[EEE Statistical Signal Processing
Workshop, 2012. SSP 2012., 2012, pp. 648—651.

R. Abdolee, B. Champagne, and A. H. Sayed, “Diffusion
LMS for source and process estimation in sensor networks,”
in IEEE/SP 17th Workshop on Statistical Signal Processing,
2012. SSP 2012, 2012, pp. 165-168.

A. Bertrand and M. Moonen, “Distributed adaptive node-
specific signal estimation in fully connected sensor networks
- part I: Sequential node updating,” IEEE Transactions on Sig-
nal Processing, vol. 58, no. 10, pp. 5277-5291, 2010.

A. Bertrand and M. Moonen, “Distributed adaptive estimation
of node-specific signals in wireless sensor networks with a tree
topology,” IEEE Transactions on Signal Processing, vol. 59,
no. 5, pp. 2196-2210, 2011.

[16]

[17]

[18]

[19]
[20]

(21]

(22]

5812

A. Bertrand and M. Moonen, “Distributed signal estimation in
sensor networks where nodes have different interests,” Signal
Processing, vol. 92, no. 7, pp. 1679-1690, 2012.

A. Bertrand and M. Moonen, ‘“Robust distributed noise re-
duction in hearing aids with external acoustic sensor nodes,”
EURASIP Journal on Advances in Signal Processing, vol.
2009, pp. 12, 20009.

A. Hassani, A. Bertrand, and M. Moonen, “Cooperative in-
tegrated noise reduction and node-specific direction-of-arrival
estimation in a fully connected wireless acoustic sensor net-
work,” Signal Processing, vol. 107, no. 2, pp. 68-81, 2015.

A. H. Sayed, Adaptive filters, Wiley-IEEE Press, 2011.

A. Bertrand and M. Moonen, “Distributed adaptive node-
specific signal estimation in fully connected sensor networks -
part II: Simultaneous and asynchronous node updating,” IEEE
Transactions on Signal Processing, vol. 58, no. 10, pp. 5292—
5306, 2010.

A. Bertrand and M. Moonen, “Energy-based multi-speaker
voice activity detection with an ad hoc microphone array,” in
1EEE 35th International Conference on Acoustics, Speech and
Signal Processing, 2010. ICASSP 2010, 2010.

S. Chouvardas, M. Muma, K. Hamaidi, S. Theodoridis, and
A. M. Zoubir, “Distributed robust labeling of audio sources
in heterogeneous wireless sensor networks,” in To appear in
IEEE 40th International Conference on Acoustics, Speech and
Signal Processing, 2015. ICASSP 2015, 2015.



