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ABSTRACT

A cooperative jamming protocol is studied in this paper and
its ability to protect the communications of a pair of users in
the presence of an eavesdropper. Communication of users is
assisted by many helping interferers, assuming knowledge of
channel state information. Closed form expressions are given
for the optimal weights and power allocation maximizing the
difference in the SNR between destination and eavesdropper;
these are determined under transmit, reliability, and security
constraints. Simulations show that noticeable improvements,
of more than 30dB, may be attained in the SNR difference
compared to the non–cooperative case.

Index Terms— Cooperative jamming, wireless networks,
physical layer security, fractional optimization.

1. INTRODUCTION

Physical (PHY) layer security approaches have received over
the last decade considerable attention [1, 2, 23]. They exploit
the characteristics of the wireless medium to allow legitimate
nodes communicate securely in the presence of eavesdroppers
that can intercept transmissions due to the broadcast nature of
the wireless communication networks. This line of research
was introduced by Wyner who proved that the communication
between a source and a destination is perfectly secure when
the source–eavesdropper channel is a degraded version of the
source–destination channel [27]. The maximum achievable
secrecy rate, i.e. the rate at which information is transmitted
with perfect secrecy from the source to the destination is said
to be the secrecy capacity, and is the performance measure to
use [19, 21]. The work of Wyner has been extended to other
cases, e.g. the transmission over the broadcast and the scalar
Gaussian wiretap channel, etc. [4, 15, 16, 25].
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The use of multiple antennas [9, 12, 18], or willingness to
cooperate [6, 26], can help to overcome the limitations of the
single–antenna systems. Cooperative transmission protocols
which are commonly considered in the literature include the
decode–and–forward (DF) [26], amplify–and–forward (AF)
[7], and cooperative jamming (CJ) [6, 26] protocol. In CJ the
helpers transmit noise in order to degrade the eavesdropper’s
channel. In most cases, the availability of global channel state
information (CSI) is assumed [17, 24, 28]; works that do not
require eavesdropper’s CSI, or need only have statistical in-
formation include [8, 11, 20, 22]. Deriving the optimal relay
(or helper) weights in closed form for a single eavesdropper
is in general not easy, and becomes quite hard to solve if more
eavesdroppers are assumed.

In this paper, nodes are assumed to cooperate via the CJ
protocol under perfect knowledge of the global CSI. Instead
of aiming at information–theoretic security, motivated by the
work in [13, 14], we maximize the difference of destination’s
signal–to–noise ratio (SNR) and the eavesdropper’s SNR. We
assume the presence of a single eavesdropper, and impose a
number of constraints related to the total power, security, and
reliability. To solve the problem, we employ techniques from
fractional programming, and derive closed–form expressions
for the optimal jamming weights and the fraction of the power
that should be allocated for jamming. Simulations have been
performed that validate the theoretical analysis.

The rest of the paper is organized as follows. In Section 2
we discuss modeling aspects of the wireless network, and the
CJ protocol. A detailed treatment of the protocol and optimal
solutions in closed–form are derived in Section 3. Simulation
results and concluding remarks are given in Sections 4, 5.

2. MODELING ASPECTS AND COOPERATION

The following notation is used hereinafter. Letters in boldface
are column vectors x if lowercase, or matrices X otherwise.
Conjugate and conjugate transpose are written as x∗ and x†,
whereas ‖x‖2 = x†x . The notationX � 0 (resp. X < 0) is
for positive definite (resp. semi–definite) matrices [10], and
IN for the order N identity matrix. The circularly symmetric
complex Gaussian distribution with mean µ and variance σ2

is denoted as CN (µ, σ2).
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2.1. System Model

The wireless network considered is shown in Fig. 1, where a
pair of nodes desire to communicate securely in the presence
of an eavesdropper. The communication is assisted by N ≥ 1
helpers that utilize the CJ cooperative protocol. All nodes are
equipped with a single omni–directional antenna and operate
in half–duplex mode. The source and the helping nodes are
indexed by i = 0 and i = 1, . . . , N respectively.
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Fig. 1. The system model.

Global CSI is assumed to be available at the trusted nodes
[6, 7, 17, 24]; that is, the channels gains h∗0, g

∗
0 (resp. h∗i , g

∗
i )

from the source (resp. ith helper) to the destination and the
eavesdropper are known to allow for coordination. When the
source transmits a symbol x using power P , the signal at the
destination and the eavesdropper is given by

yD =
√
Ph∗0x+ ηD

yE =
√
Pg∗0 x+ ηE

(1)

where E[|x|2] = 1 is assumed and ηD, ηE ∼ CN (0, σ2). This
corresponds to the case of direct transmission (DT) where the
source uses all its power budget for transmitting the signal to
the destination. The SNR at the destination and eavesdropper
is γD = P |h0|2/σ2 and γE = P |g0|2/σ2 respectively.

2.2. Cooperative Protocol

The helpers cooperate with the source via the CJ protocol to
securely transmit information to the destination. It is assumed
that the existence and number N of helpers is a priori known.
In addition, we suppose that the destination and the helping
nodes have knowledge of the common jamming signal z to be
used, where likewise we let E[|z|2] = 1.

More precisely, assuming that P is the power available for
transmitting both signals x and z, the trusted nodes decide on
allocating αP power, α ∈ [0, 1), for the jamming signal and
the remaining (1−α)P power for transmitting the symbol x.
The ith helping node transmits a weighted version wiz of the
common jamming signal while the source transmits x. Then,
the signal received at the destination and the eavesdropper is

yD =
√

(1− α)P h∗0x+
√
αP h†wz + ηD

yE =
√

(1− α)P g∗0x+
√
αP g†wz + ηE

(2)

wherew† = (w∗1 · · · w∗N ) contains the weights being used by
the helping interferers with ‖w‖ = 1 and h† = (h∗1 · · · h∗N );
the vector g is similarly defined. The SNR at the destination
and the eavesdropper becomes

γCJ
D = γD ·

(
1− α

)
σ2
/(
αPw†hh†w + σ2

)
γCJ

E = γE ·
(
1− α

)
σ2
/(
αPw†gg†w + σ2

) (3)

under the assumption that h†w (resp. g†w) and ηD (resp. ηE)
are independent random variables. From (3) we immediately
obtain γCJ

D ≤ γD and γCJ
E ≤ γE, due to the fact that hh† < 0

and gg† < 0 respectively, where both upper bounds hold with
equality if and only if α = 0. The jamming signal’s to noise
power ratio εD = P‖h‖2/σ2 at the destination is defined, and
corresponds to the case where all power goes to jamming (i.e.
α = 1) and the angle between h,w equals 0,±π. Likewise,
we define εE = P‖g‖2/σ2 at the eavesdropper.

3. SYSTEM DESIGN

Let Γ CJ
D and Γ CJ

E denote the values of γCJ
D , γ

CJ
E in dB. Our goal

is to maximize the difference ∆Γ CJ = Γ CJ
D − Γ CJ

E , referred to
as the security gap in [13, 14]. In other words, the transmitting
nodes need to determine the optimal power allocation α? and
the weights w? that maximize the security gap

(α?,w?) = arg max
α,w

γCJ
D

/
γCJ

E (4)

= arg max
α,w

γD

γE
· αPw

†gg†w + σ2

αPw†hh†w + σ2

s.t. α ∈ [0, 1) (4a)
‖w‖ = 1 (4b)

γCJ
D ≥ γ+ (4c)

γCJ
E ≤ γ− (4d)

The above constraints pertain to power allocation (4a)–(4b),
reliability (4c), as well as, security (4d). The minimum SNR
at the destination is denoted by γ+ and is chosen so that high
communication reliability is attained, and γ− corresponds to
the maximum desirable SNR at the adversary. An interesting
approach to determine a suitable value for γ−, assuming that
eavesdroppers have bounded resources (computational, time,
and memory), has been recently proposed in [14].

In the sequel we assume that α 6= 0 for the analysis of CJ
protocol to be meaningful. Note that DT is obtained from (2)
for α = 0, in which case (4) gives γCJ

D /γ
CJ
E = γD/γE whereas

γCJ
D < γD and γCJ

E < γE from (3). Let us define

bj(x) =
γj − x
γj + εjx

and cj(x) =
γj − x
γj

(5)

for j ∈ {D, E}, where both functions map all x ∈ (0, γj) into
the interval (0, 1) and bj(x) < cj(x) holds. In order to solve
(4), we reformulate the fractional optimization problem based
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on an approach due to Dinkelbach [5] as follows (γD/γE does
not depend on α,w and can therefore be omitted):

F (t) = max
α,w

f(t, α,w) (6)

= max
α,w

αPw†
(
gg† − thh†

)
w +

(
1− t

)
σ2

s.t. α ∈ (0, 1) (6a)

w†w = 1 (6b)

w†hh†w ≤ qD(α) (6c)

w†gg†w ≥ qE(α) (6d)

where the reliability and security constraints are expressed in
terms of the functions qD(x) = (cD(γ+)− x)|h0|2/γ+x and
qE(x) = (cE(γ−)− x)|g0|2/γ−x. The next lemma is easy to
prove using (5) and the definitions of qD, qE.

Lemma 1. The conditions (a) γ+ < γD, (b) γ− < γE and (c)
γ+< p(γ−)1 must hold for a nonempty feasibility set in (6).

It is known that the original problem (4) and the one in (6)
are related via the following result.

Proposition 1 ([17]). With the above notation, F (t) is strictly
decreasing and F (t) = 0 has a unique root t?. Moreover, the
optimal (α?,w?) of (6) associated with t? is also the solution
of the original problem (4), and t?γD/γE is the optimal value
taken by the objective function.

We now proceed with the analysis of (6) by first defining
the associated Lagrangian and then determining the Karush–
Kuhn–Tucker (KKT) conditions that must be satisfied by any
optimal solution [3]. From (6), its Lagrangian is given by

L(t, α,w,λ) = − f(t, α,w) + λD

(
w†hh†w − qD(α)

)
+ λP

(
w†w − 1

)
− λE

(
w†gg†w − qE(α)

)
where λ = (λP λD λE) is the vector of Lagrange multipliers
corresponding to the constraints (6b)–(6d). By using the KKT
conditions, it is not difficult to show that the constraint

λ?D
|h0|2
γ+

= λ?E
|g0|2
γ−

+ λ?P (7)

is obtained on the optimal value λ? of Lagrange multipliers.
Then, from (7) and the fact that λ?P 6= 0 and λ?D, λ

?
E ≥ 0 should

hold, we conclude that at least one of the multipliers λ?D, λ
?
E is

nonzero, therefore proving the following result.

Proposition 2. The optimal solution (α?,w?) of (6) is such
that either (6c) or (6d) is satisfied with equality.

Next, we suppose that the reliability constraint (6c) holds
with equality and determine the unique optimal solution. The
analysis for the case where the optimal solution satisfies (6d)

1p(x) = γD(x+ εEx)/(γE + εEx)

with equality is similar (it is omitted due to space limitations).
Substitutingw†hh†w = qD(α) into the objective function of
(6) we see that the function F (t) is written as

F (t) =
(
1− t

)
σ2 + P max

α
α
(
− tqD(α) + max

w
|g†w|2

)
and therefore we first proceed to solve the quadratic problem
w? = arg maxww

†gg†w subject to (6b)–(6d) where (6c) is
satisfied with equality. It is readily shown using hh† < 0 and
gg† < 0 that for the constraints (6c) and (6d) to hold we need
to have α ∈ A = [bE(γ−), cD(γ+)].

Theorem 1. Let θ = h∠g be the angle between h, g and let
γ+> p′(γ−)2. For all α ∈ A , the optimal solution w? of

max
w
w†gg†w s.t.


w†w = 1

w†hh†w = qD(α)

w†gg†w ≥ qE(α)

(8)

is given by w? = vDh+ vE g, and ∀φ ∈ [0, 2π) we have

vD = 1
‖h‖2

(
|vE| |h†g| −

√
qD(α)

)
· ejφ (9a)

vE = 1
ρ

√
‖h‖2 − qD(α) · ej(φ−θ+π) (9b)

where ρ = ‖h‖‖g‖| sin θ |.

The solution w? provided by Theorem 1 (whose proof is
extensive and will be included in the full paper) depends on α
according to (9). Let us define k = |h0|2(|h†g|2 − ρ2)/‖h‖4
and l = 2ρ |h0|2|h†g|/‖h‖4. Substitution of w? yields

f(x, α) = r −
(
1− α

)
x+
√
s(α) (10)

where r, and the coefficients of the quadratic function s(α) =
−s0 + s1α− s2α2, are provided below

r =
ρ2

‖h‖2 +
|h0|2
γD

+ k

(
2

γ+
− 1

γD

)
(11a)

s0 = l2
(

1

γ+
− 1

γD

)2

(11b)

s1 = l2
(

1

γ+
− 1

γD

)(‖h‖2
|h0|2

+
2

γ+

)
(11c)

s2 = l2
(‖h‖2
|h0|2

+
1

γ+

)
1

γ+
(11d)

and the change of variables x = 1
‖h‖2 ρ

2 + 1
γ+ (k + t |h0|2) is

performed to simplify the resulting expression. To determine
the optimal α? maximizing (10), we need to consider the case
θ = 0,±π separately, since then s(α) is identically zero (due
to l = 0), and the derivative of the square root is not defined.
As f becomes a linear function of α in this case, we clearly
have that α? ∈ {bE(γ−), cD(γ+)} and the particular value of

2p′(x) = γD(x+ εEx)/(γE + εEx+ εD(γE − x) cos2 θ)
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Fig. 2. Fraction α of the power P allocated to jamming for
various values of N, γ− (β = 0.2, angle = 0 · π8 )

α? depends on the sign of x. It is not difficult to show that we
have s(cD(γ+)) = 0 and that the second root of s(α) does not
lie in the interval A under the assumptions of Theorem 1; the
value of f at α = cD(γ+) must be compared with the optimal
value derived from Theorem 2.

Theorem 2. Let A � = A \{cD(γ+)} and δS = s21 − 4s0s2.
With the notation of Theorem 1, if θ 6= 0,±π, the value

α? =
s1
2s2

+
x

2s2
·
√
δS√

s2 + x2
(12)

is the optimal solution of the problem F (x) = maxα f(x, α)
s.t. α ∈ A �, where f is given by (10).

As expected, the solution given by Theorem 2 depends on
x (the proof is omitted due to space limitations). To compute
the actual values of (α?,w?) we need to determine the root of
F (x) first; the solution is provided in Theorem 3.

Theorem 3. With the above notation, the equation F (x) = 0
has a unique root x? that is given by

x? =
r (s1 − 2s2)−

√
δS ·
√
r2 − s(1)

2s(1)
(13)

where s(1) is the value of s at α = 1; the optimal value of the
original problem (4) is t? = γD γ

+

γE|h0|2
(
x? − ρ2

‖h‖2 − k
γ+

)
.

4. SIMULATION RESULTS

In the simulations, helping nodes are assumed to be randomly
distributed in a disk of radius 5m with the source at its center;
the destination is fixed at 20m distance from the source, while
the eavesdropper is moving on a line that passes through the
source at a fixed angle i · π8 , for i = 0, . . . , 4. A simple line–
of–sight model is assumed h = d−

c
2 ejϕ between a transmitter

and a receiver, where d is their distance, ϕ their phase offset,
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Fig. 3. The SNR gap between destination/eavesdropper for
various values of N, γ− (β = 0.2, angle = 0 · π8 )

and c = 4 is the path loss exponent. The noise variance σ2 is
equal to −30dBm. We evaluated the performance of the CJ
scheme, by solving problem (4) according to Theorems 1, 2,
and 3. The experiments included varying number of helpers
and values γ+, γ−. Monte–Carlo simulations are performed
and each setup is repeated 103 times to get average results.

The power devoted to jamming is shown in Fig. 2, versus
the distance of the eavesdropper form the source. The helping
nodes devote less power whenever the eavesdropper is close
to the source (and hence close to their location) as the helper–
eavesdropper channel is then not greatly affected by path loss
in such cases. Decreasing the upper bound γ− in the SNR, is
shown to increase the fraction α of the power P that goes to
jamming even when the eavesdropper is at the proximity of
the interferers. On the other hand, an increase in the number
N of helpers —although it does not result in a corresponding
increase of the SNR gap (as illustrated in Fig. 3)— it utilizes
the available power in a more efficient way, attaining about
the same security gap with less power on jamming.

N γ− d : −12 −8 −4 4 8 12

2 β5γE 11.22 21.72 33.07 25.85 13.03 5.27
16 β2γE 10.00 15.62 15.25 14.55 12.47 8.17

The table shows an SNR gap increase up to 33dB if the
eavesdropper is close to the source (β = 0.2, angle = 0 · π8 ).

5. CONCLUSIONS

A cooperative jamming protocol is presented that allows two
wireless nodes to communicate securely in the presence of an
eavesdropper. Closed–form expressions have been given for
the case of a single eavesdropper. The proposed protocol has
shown to perform very well in the case that the S–E channel is
superior than that of the S–D channel. Ongoing work focuses
on extensions to multiple eavesdroppers.
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