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ABSTRACT
In this paper, the parameter estimation problem based on diffu-

sion least mean squares strategies is studied from a coalitional game
theoretical perspective. The problem has been modeled as a non-
transferable coalitional game and two scenarios have been consid-
ered, one where the value function includes only a suitable estima-
tion accuracy criterion and another one in which the cost of coalition
formation is taken into account as well. In the former scenario, we
first analyze the non-emptiness of the core of the games correspond-
ing to traditional diffusion strategies, and then, we extend the analy-
sis to a recently proposed node-specific parameter estimation setting
where the nodes have overlapped but different estimation interests.
In the latter scenario, we employ a distributed coalition formation al-
gorithm, based on merge-and-split steps, which converges to a stable
coalition structure.

Index Terms— Adaptive distributed networks, diffusion algo-
rithm, cooperation, node-specific parameter estimation, coalitional
game theory, NTU game.

1. INTRODUCTION

Several low-complexity distributed strategies for parameter estima-
tion, based on least mean squares (LMS), have been studied in the
literature, i.e., the consensus, the incremental and the diffusion strat-
egy (see [1]-[2] and references therein). In most of the existing pa-
pers, it is assumed that the nodes have exactly the same interests.
More recently, research efforts have focused on removing this re-
striction. In [3]-[7], a Node-Specific Parameter Estimation (NSPE)
formulation has been introduced where the nodes have overlapped
but different estimation interests. Also, in [8], the authors proposed
an algorithm for a scenario where nodes have numerically similar
estimation interests, while in [9], for the same scenario, the perfor-
mance of the diffusion strategy has been studied. However, it is of
interest to study the problem of parameter estimation over networks
in the case where nodes or groups of nodes are allowed to be selfish
using concepts from game theory.

In general, game theory can be defined as the study of mathe-
matical models of conflict and cooperation between intelligent ratio-
nal decision-makers. It has been applied to various disciplines such
as economics, political sciences, philosophy and more recently, to
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engineering [10]. Unlike non-cooperative game theory where the
modeling unit is a single player, coalitional game theory, that is the
focus of this work, seeks for optimal coalition structure of players in
order to optimize the worth of each coalition. According to [11],
coalitional games can be classified into the following three cate-
gories, i.e., canonical coalitional games, coalition formation games
and coalitional graph games.

The literature dealing with the analyses of the adaptive net-
works from the game theoretic perspective has been rather limited.
Most studies focus mainly, although not exclusively, on the game-
theoretical approaches based on non-cooperative game theory. The
authors in [12]-[13] allow the nodes to be selfish while minimizing
their own cost functions that combine both the estimation accuracy
and the communication cost. In the pairwise one-shot successive
game setting [12], after showing that the dominant strategy is not
to cooperate, the authors proposed a reputation mechanism in order
to motivate cooperation among selfish nodes. In the same setting,
they provide an approximative cluster formation protocol in [13],
where the nodes decide in a pairwise manner whether they should
merge according to the estimation gain and communication cost
associated with that action. A game-theoretic approach to node ac-
tivation control in parameter estimation via diffusion LMS has been
considered in [14]. The energy-aware activation control is modeled
as a non-cooperative repeated game, where the aim for each node is
to be activated only when its contribution outweighs the activation
cost, and it is able to track the set of approximate correlated equi-
libria of the underlying activation control game. In [15], the authors
formulated the distributed adaptive filtering problem as a graphical
evolutionary game under the imitation strategy updating rule, and
proved that the strategy of using information from nodes with good
signal is always an evolutionarily stable strategy. In all these studies,
the aim of the nodes was to estimate a set of global parameters that
were identical to all nodes.

In this work, we analyze a distributed adaptive parameter esti-
mation problem in the framework of coalitional game theory. We
consider the coalitional game to be the Non-Transferable Utility
(NTU) game for which the choice of coalitional actions defines each
player’s payoff. The contribution of our work is two-fold: 1) we
study the parameter estimation problem via diffusion strategy as a
canonical game and extend the analysis to an NSPE setting, and 2)
we propose coalition formation game for the specific NSPE setting
when the coalition formation cost is considered.

2. CANONICAL GAMES FOR PARAMETER ESTIMATION

In this section, we analyze a distributed adaptive parameter estima-
tion problem for a scenario where the value function includes only a
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suitable estimation accuracy criterion. One could select various mea-
sures of the estimation performance, e.g., estimation error, speed of
convergence, etc. In this work, we consider Mean Square Deviation
(MSD) in the steady-state to be minimized at each node k. The nodes
of the network represent the players in the game, while we want to
study whether and under which conditions the players will form the
grand coalition, i.e., the case where all the nodes of the network co-
operate. To study the stability of the grand coalition, we will use the
well-established solution concept of the core.

2.1. MSD game definition

Let us define an NTU coalitional game (N , υ), where N =
{1, . . . , N} is the set of players (nodes) while υ(S) ⊆ RN is
the set of vector values of a coalition S ⊆ N . The maximum
estimation accuracy that a certain node k ∈ S may achieve in a
coalition S is the payoff xk, where xk is the kth element of payoff
vector x ∈ υ(S), and is given by

xk(S) = −MSDk(S) = −E‖ŵk,S − wo‖2. (1)

Note that in (1), ŵk,S denotes a steady-state estimate of wo ∈
CM×1 that a node k may achieve while cooperating, through the
diffusion LMS strategy (see Eq. 16 in [2]), with the nodes that also
belong to the same network subset S ⊆ N . Naturally, each node is
rationally selfish in the sense that it aims to maximize its own payoff.

2.2. Data assumptions

To convey the main ideas of this work, it is sufficient to assume that
the data {dk(i), uk,i} are realizations of zero-mean jointly wide-
sense stationary random processes related through the model

dk(i) = uk,iw
o + vk(i) (2)

and satisfying the following assumptions:

A1) the regressors uk,i ∈ C1×M are temporally and spatially
white with the autocovariance Ruk = Ru > 0 equal for
all nodes,

A2) vk(i) ∈ C is temporally and spatially white noise, of variance
σ2
vk , and which is independent of u`,j for all k, i, `, j,

A3) the step sizes µk = µ in the LMS recursion of diffusion strat-
egy are equal for all nodes, and are sufficiently small so that
the higher-order terms of µ can be ignored.

2.3. MSD game analysis

To analyze the MSD game defined in 2.1, we first need to provide
some definitions and concepts from the literature.

Firstly, in order to classify an NTU game as canonical, it is re-
quired to be [11]:

• in characteristic form, i.e., the value of a coalition S is deter-
mined exclusively by the members of that coalition

• superadditive, i.e.,

υ(S1)∩ υ(S2) ⊆ υ(S1 ∪ S2),

∀S1 ⊂ N , S2 ⊂ N , s.t.S1 ∩ S2 = ∅.
(3)

Due to the fact that, in a canonical game, cooperation is never
harmful with respect to the non-cooperative case, it is important to
study the properties of the grand coalition, i.e., the coalition of all

nodes. To this end, we will employ the probably most studied solu-
tion concept, known as the core.

The core of a canonical game is the set of payoff allocations for
which it holds that no coalition S ⊂ N , S 6= ∅ has an incentive to
split off and leave the grand coalition. In order to solve a NTU game
using the core, the following standard conditions should hold for a
family of sets υ = (υ(S))S⊆N [16], [11]: (i) The value υ(S) must
be a non-empty closed subset of RN , (ii) The value υ(S) must be
comprehensive, i.e., if x ∈ υ(S) and y ∈ RN are such that yk ≤ xk
∀k ∈ S, then y ∈ υ(S), (iii) The set {x | x ∈ υ(S) andxk ≥
zk, ∀k ∈ S} with zk = max{yk | y ∈ υ({k})} < ∞, ∀k ∈ N
must be a bounded subset of RN . Finally, for a canonical NTU game,
the core is defined as

CNTU = {x ∈ υ(N )| ∀S, @y ∈ υ(S), s.t. yk > xk, ∀k ∈ S} . (4)

However, the core of NTU canonical games are not always guaran-
teed to exist. Therefore, it is necessary to examine the non-emptiness
of the core.

In general, proving the non-emptiness of the core is an NP−
complete problem since the number of possible coalition structures
grows exponentially with the number of players [17]. A way to prove
that the core is nonempty is by showing that the game being analyzed
is balanced [16]-[18], since the balanced condition is sufficient (yet
not necessary) in case of an NTU game and is given by⋂

S∈B

υ(S) ⊆ υ(N ), ∀B (5)

where B is a balanced subsets’ family, i.e., a family of nonempty,
proper subsets ofN where there exist positive weights δS for S ∈ B
such that ∑

S∈B,k∈S

δS = 1, ∀k ∈ N . (6)

Now, we analyze the MSD game defined in Subsec. 2.1. Note
that, under the assumptions made in Subsec. 2.2, the MSD achieved
at each node k in a connected network of N nodes, can be well-
approximated by the following expressions [2, p.163]:

1) in case of doubly stochastic combination weights

MSDdoubly
k (N ) ≈ µM

2
· 1
N
·

(
1

N

N∑
k=1

σ2
vk

)
, (7)

2) in case of combination weights using the Hasting rule

MSDHasting
k (N ) ≈ µM

2
·

(
N∑
k=1

σ−2
vk

)−1

. (8)

Theorem 1. Under the assumptions A1-A3, the MSD game with
doubly stochastic combination weights is, in general, not canonical
and has empty core.

Proof. The proof is based on assuming the case of arbitrarily differ-
ent noise variances at different nodes which indicates that the game
is not superadditive in general.

Theorem 2. The MSD game with Hasting rule combination weights,
under the assumptions A1-A3, is a canonical one and has non-empty
core.

Proof. The proof is based on the game superadditivity due to (8),
and proving the core non-emptiness by showing that the game is
balanced which is a sufficient condition.
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Fig. 1. An example of an NSPE network with Pa = {1, . . . , 7} and
Pb = {5, . . . , 10}.

2.4. Extension to NSPE-MSD game

In this subsection, the coalitional game-theoretical discussion is
extended to a more general, Node-Specific Parameter Estimation
(NSPE) setting. Let us assume that there are two vectors of param-
eters affecting an area of N nodes, i.e., woa and wob , where not all
the nodes are influenced by both vectors of parameters. The subset
of nodes affected by woa is denoted by Pa while Pb stands for the
subset of nodes interested in estimating wob , see Fig. 1. In this set-
ting, which can be seen as a special case of the NSPE formulation
introduced in [3]-[7], the data of each node k are related through the
model

dk(i) =


uak,iw

o
a + ubk,iw

o
b + vk(i) if k ∈ Pa ∩ Pb,

uak,iw
o
a + vk(i) if k ∈ Pa \ Pb,

ubk,iw
o
b + vk(i) otherwise.

(9)

To simplify the analysis for this NSPE scenario, besides the assump-
tions made in Subsec. 2.2, we further assume that

A4) the regressors uak,i ∈ C1×Ma and ubk,i ∈ C1×Mb are inde-
pendent.

Even under assumptions A1-A2 and A4, and regardless of the coop-
eration strategy, there is a coupling between the estimation processes
related to woa and wob in the general case. This coupling is due to the
influence of higher order data moments that are multiplied by µ2

in the expressions for mean-square performance, (see discussion for
standalone LMS in [19],) or for cooperative NSPE settings in [6]-
[7]. However, for sufficiently small step size (A3) , this effect can
be ignored. Therefore, under assumptions A1-A4 and for the ob-
servation model given in (9), the MSD achieved at each node k in
the considered diffusion NSPE setting can be well-approximated as
follows

MSDk(N ) ≈ MSDk,wa(Pa) +MSDk,wb(Pb) (10)

where MSDk,wj (Pj) ,∀j ∈ {a, b}, and, for instance, for Hasting
combination rule, it is given by

MSDk,wj (Pj) ≈

µMj

2
·
(∑

k∈Pj
σ−2
vk

)−1

if k ∈ Pj ,
0 otherwise.

(11)

Now, let us define the NSPE-MSD game by extending the MSD
game from Subsec. 2.1. In particular, let us define a player as a node
per each estimation task that is within its interest. For instance, the
node 7 in Fig. 1 is representing two players, one for each estimation
task. Finally, we generalize Thm 2 for the described NSPE scenario
as follows:

Theorem 3. The NSPE-MSD game with Hasting rule combination
weights, under the assumptions A1-A4, is a canonical one and has
non-empty core.

Proof. The proof is a generalization of the proof of Thm 2.

3. COALITION FORMATION GAME FOR PARAMETER
ESTIMATION

So far, we have analyzed the (NSPE-)MSD games and the formation
of the grand coalition in case where the nodes cooperate without any
cost. Now, the goal is to find the coalition structure that enables the
nodes to maximize their utilities while taking into account the cost
of coalition formation as well.

3.1. NSPE-MSD-COMM game definition

We define an NTU coalitional game (N a,b, υ) where we model now
each player as a node per its estimation task with |N a,b| = |Pa| +
|Pb|. Furthermore, the payoff x(j)k achieved by each node k in a
coalition Sj , per each estimation task j ∈ {a, b} where k ∈ Pj , as:

x
(j)
k (Sj) = gain

(j)

k,Sj − c
(j)

k,Sj (12)

where

• gain(j)

k,Sj = MSDk,wj (k)−MSDk,wj (S
j),

• c(j)
k,Sj stands for the total communication cost that is incurred

by a node k in order to establish a coalition Sj .

3.2. NSPE-MSD-COMM game analysis

Let us now analyze the grand coalition formation of the
NSPE-MSD-COMM game defined above.

Theorem 4. The NSPE-MSD-COMM game with either doubly
stochastic combination weights or with Hasting rule combination
weights has, in general, empty core.

Proof. The proof is based on assuming the case of two arbitrary
disjoint coalitions Sj1 ,Sj2 , where k ∈ Sj1 , that are far enough (high
communication cost) so that xk(Sj1 ∪ S

j
2) < xk(S

j
1), implying also

that the game is not superadditive in general.

Due to the fact that the grand coalition will not be formed in
general, we aim to apply a coalition formation algorithm and analyze
the properties of the coalitional structure being formed. In particular,
we focus on the so-called Merge-Split approach, initially presented
in [20], and applied in the context of several applications [11], [21]-
[24].

To this purpose, let us make the following definitions. A col-
lection of coalitions S is the set of mutually disjoint coalitions, i.e.,
S = {S1, . . . , Sl}, where Sn ⊂ N for n = 1, . . . , l. If a collection
S comprises all the nodes of N , then the collection S is a partition
of N . The Pareto order operator . for comparing two collections
R = {R1, . . . , Rm} and S = {S1, . . . , Sl}, that are partitions of
the same subset of nodes A ⊂ N , is defined as follows

R . S ←→ xk(R) ≥ xk(S), ∀k ∈ R,S (13)

with at least one node satisfying the strict inequality >.
Now, we can define a distributed algorithm based on two simple

steps, i.e., merge and split [20],[21], as follows,

• ∀j ∈ {a, b}, merge any set of coalitions {Sj1, . . . , S
j
l } if it

holds
⋃l
n=1 S

j
n . {Sj1, . . . , S

j
l },

• ∀j ∈ {a, b}, split any coalition
⋃l
n=1 S

j
n if it holds

{Sj1, . . . , S
j
l } .

⋃l
n=1 S

j
n.

5795



2 4 6 8 10
−45

−40

−35

−30

−25

Node index

M
S

D
 in

 s
te

ad
y−

st
at

e 
[d

B
]

 

 

Hasting−Grand coalition
Hasting−Disjoint coalitions
Non−cooperative
Doubly−Grand coalition
Doubly−Disjoint coalitions

Fig. 2. Steady-state MSD per node for the task wo.
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Fig. 3. Steady-state MSD per node for the NSPE setting with woa
and wob .

In other words, |Pj |−player game is formed using merge-split
operations for each estimation task j. Note that coalitions will merge
(or split) only if there is at least one node that is improving its payoff
while there is no decrease in the payoffs of the other nodes of the
coalitions involved in the merge (or split) operation. The algorithm
terminates for any initialization, and the coalition structure always
converges to a Dhp−stable coalition structure [20], i.e., no player
has incentive to leave its coalition. In order to account for time-
varying noise variances and/or node mobility, the coalition formation
process may be repeated periodically during the network operation.

4. SIMULATIONS

Firstly, in order to verify Thm 1-3, obtained based on the approxi-
mate MSD expressions (7)-(8), we simulate a) the setting where all
the nodes estimate a common parameter vector and b) the NSPE
setting. We consider a network of N = 10 nodes with the mea-
surements following the observation model (2) with M = 8 and
µ = 5·10−3. The regressors uk,i are zero mean with autocovariance
Ru = I . The noise variances for nodes 4 and 7 are σ2

v4 = σ2
v7 =

8 · 10−3, while for all other nodes they are chosen from the interval
(0.04, 0.2). We compare the LMS-based non-cooperative strategy
and the diffusion LMS, where nodes cooperate all together (grand
coalition) and where there are two disjoint coalitions of nodes, i.e.,
S1 = {4, 7} and S2 = N \ S1. In Fig. 2, it can be seen that the
grand coalition does not bring improvement to all nodes in the case
of doubly-stochastic combination weights. On the contrary, in the
Hasting case, the grand coalition makes all nodes better off. For the
NSPE scenario with two estimation tasks, i.e., woa and wob , we set
Pa = {1, . . . , 7}, Pb = {5, . . . , 10} and Pa ∩ Pb = {5, 6, 7},
as in Fig. 1. The filter lengths are chosen to be the same, i.e.,
Ma = Mb = 8. Again, it is shown that the grand coalition for
the Hasting case is stable (Fig. 3).

To illustrate the effectiveness of the proposed NSPE merge-split
protocol we provide some indicative simulation results. The proto-
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Fig. 4. Maximum and average coalition size versus communica-
tion cost for the NSPE network with Pa = {1, . . . , 8} and Pb =
{6, . . . , 10}.

col is practically implemented as follows. For each estimation task
j ∈ {a, b}, any coalition T ji from an initial network partition T
starts the merging process by performing pairwise negotiations with
other coalitions. If a merge occurs, the newly formed coalition con-
tinues the search for merging until it is possible. Then, the merg-
ing process is repeated for all other coalitions from T that have not
been merged yet. Afterwards, the resulting coalition(s) are perform-
ing split operations, if any is possible. We model communication
cost between the nodes k and ` with a simple exponential model,
i.e., ck,` = β · e(dk,`/d0), where d0 is a reference distance, dk,`
denotes the distance between the nodes k and `, while β is a nor-
malization coefficient. Assuming the broadcast nature of the com-
munication, the total communication cost for a node k in order to
establish a coalition Sj is given by c(j)

k,Sj = max
`∈Sj

ck,`. We con-

sider a network of N = 10 nodes where each node k has a noise
variance σ2

vk between 0.1 and 0.6. There are two vectors of param-
eters to be estimated, i.e., woa and wob , with Pa = {1, . . . , 8} and
Pb = {6, . . . , 10}. We set µ = 0.001 and Ma = Mb = 10.
We evaluate the MSD expressions for the Hasting case. In Fig. 4,
we plot the sizes of coalitions resulting from the NSPE merge-split
protocol as a function of the communication cost (normalization co-
efficient). For each estimation task, we plot the maximum and the
average coalition size. The results have been averaged over 100 ex-
periments where we randomly set dk,`/d0 between 0 and 5. The fig-
ure shows that for zero (or relatively small) communication costs, the
coalition structures for estimating woa and wob correspond to Pa = 8
and Pb = 5, respectively, i.e., the grand coalition. As the communi-
cation costs increase, the coalitions get split, and finally, they reduce
to the non-cooperative nodes.

5. CONCLUSIONS

We have modeled the distributed adaptive parameter estimation
problem as a non-transferable coalitional game. Initially, we have
studied the parameter estimation problem via diffusion strategy as
a canonical game and we have extended the analysis to NSPE set-
ting. Then, we have proposed a coalition formation game for NSPE
setting when the coalition formation cost is taken into account. The
proposed algorithm may adapt to a dynamic environment as the
coalitions can periodically merge or split depending on the nodes’
distance-based communication cost and/or time-varying noise vari-
ances. Our future work may consider extending the aforementioned
games to a coalitional graph games setting.
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