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ABSTRACT

A novel algorithm for distributed labeling of speech sources is pro-

posed. We consider a wireless sensor network comprising devices

that are equipped with multiple microphones, which can “hear” a

number of speech signals. The labeling task is performed in a de-

centralized fashion with a new two–step approach. The first step

corresponds to the distributed extraction of proper source–specific

features from the mixed signals. In the second step, these features

are exploited via a distributed unsupervised learning technique. We

present approaches that can be used in hierarchically organized or

in non-hierarchically organized network configurations. Numerical

examples using real data display the performance of the proposed

technique.

Index Terms— distributed clustering, speech labeling, wireless

sensor network, cooperative signal processing, feature extraction

1. INTRODUCTION

Much research in cooperative signal processing for wireless sensor

networks (WSN) has focused on solving a common signal process-

ing task given a distributed set of devices that are equipped with

sensing, computing and communication capabilities. A new and

emerging research direction concerns the question how multiple de-

vices can cooperate in multiple tasks (MDMT). Consider, for exam-

ple, MDMT distributed audio signal enhancement in a public area,

such as an airport, a stadium, etc. Here, the multi-sensor devices

(e.g., smart-phones, hearing aids) are interested in enhancing their

node-specific audio source of interest, given a received mixture of

interfering sound sources. Each node is interested in enhancing its

own node-specific signal of interest, which may be considered to be

a disturbance at a different node and vice-versa. Clearly, in this case,

nodes may benefit from a cooperation, even though their source of

interest differs. A crucial step in order to achieve a benefit, e.g., a

better node-specific signal enhancement, in such an MDMT appli-

cation, is the common unique labeling of all relevant speech sources

that are observed by the WSN. In this setting, the labeling informa-

tion must be extracted locally from the mixtures of received signals.

To the best of our knowledge, there exists no approach to solve the

distributed labeling problem up to date, and novel approaches are

urgently sought for to enable MDMT.
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One may think of applying distributed blind source separation

(BSS) techniques, e.g., [1], followed by source–specific feature ex-

traction, given the separated signals. However, distributed BSS is a

very challenging research direction of its own and constitutes a com-

putationally demanding task, that requires the distributed computa-

tion of higher order statistical moments. Furthermore, the exchange

of raw sensor signals is often prohibited in practical scenarios due

to communication (bandwidth/energy) constraints. New simple but

informative features, that do not require BSS, are thus considered for

the distributed/cooperative unsupervised learning.

Related work: While some work has been done on distributed

classification [2, 3, 4, 5], to the best of our knowledge, the distributed

labeling task has not yet been addressed. A distributed algorithm for

supervised learning, in the presence of a fusion center has been pro-

posed in [5] and totally decentralized schemes in [3, 2]. Distributed

algorithms for unsupervised learning have been proposed in [6, 4].

All the previously mentioned efforts assume that the features are

available at each node. In the current study, however, we consider

the more realistic scenario where the features are not available a–

priori. This is a rather challenging task due to the fact that the various

speech signals, to be labeled, are mixed.

Contributions: This paper presents a new framework of dis-

tributed labeling of speech sources in a WSN. We present two types

of feature extraction approaches, which estimate the source-specific

features from a received mixture of sound sources impinging onto

the microphone array of each device. We consider a hierarchical

network in the first proposed feature extraction approach. Here the

energy signatures of each source are extracted by a computation-

ally attractive non–negative independent component analysis in each

sub-network. The second proposed feature extraction approach op-

erates in non–hierarchical networks by exploiting similarities in the

frequency bands of the subspace decompositions at each node, that

produce reliable direction-of-arrival estimates of the speech sources.

We next propose a distributed centroid clustering scheme for both

feature extraction approaches. We also provide a realistic experi-

ment that evaluates the performance of the proposed methods for

different noise levels, in a 20 node WSN with three speech sources.

The paper is organized as follows. Section 2 provides the prob-

lem formulation. Section 3 is dedicated to introducing, in detail, two

new features that are used for the labeling task. We consider both

hierarchical and non-hierarchical networks for the feature estima-

tion. Section 4 describes how the distributed clustering is performed

based on the previously extracted features. Section 5 evaluates the

performance of the proposed methods in a practical scenario, and

Section 6 concludes the paper.
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2. PROBLEM FORMULATION

Consider a public area, such as an airport, a subway station hall,

a stadium etc., containing N sound sources and D devices, each

equipped with J ′ microphones. The total number of microphones of

the network will be denoted by J . The devices are willing and capa-

ble to cooperate in order to perform a device-specific signal process-

ing task, e.g., speech enhancement. An example of such a scenario

is illustrated in Fig.1, which depicts a use-case of a 20 × 10 meter

room with a reverberation time of T60 = 0.3 seconds, containing

N = 3 sound sources, D = 20 devices, each equipped with J ′ = 3
microphones in a vertically oriented uniform linear array configura-

tion with an inter-sensor spacing of 1.5 centimeters.

Fig. 1: Use-case scenario: 20 × 10 meter room with a reverberation

time of T60 = 0.3 seconds. D = 20 devices, each equipped with

J ′ = 3 microphones, cooperate in order to label the N = 3 speech

sources. The microphone signals are sampled at fs = 16 kHz.

Obviously, cooperation among the nodes requires that the de-

vices exchange information related to a certain signal of interest. To

that end, the various speech signals of the network need to be la-

beled. More importantly, the labels corresponding to speech signals

should be the same throughout the whole network. In the current

study we focus on the scenario, where a fusion center for centralized

processing is not present and the devices form a fully decentralized

network.

3. DISTRIBUTED LABELING VIA CLUSTERING

For the labeling of the different speech sources throughout the net-

work, we propose a two–step approach. The steps are the following:

1. Feature extraction at each device for each speech source of

the network.

2. Distributed clustering using the previously computed fea-

tures.

We next detail the above steps, which constitute our proposed ap-

proach. Regarding the feature extraction, ideally we seek for fea-

tures for each speech source, which are similar from node to node.

This is a challenging task, since the various speech signals are mixed

and the signal powers in the mixtures differ significantly. In our

approach, we do not consider distributed source separation, for the

reasons stated in Section 1.

After computing proper features, we employ a distributed clus-

tering scheme. The goal of distributed clustering algorithms is to

form the clusters in a way that they exploit all the available data of

the network by relying, however, only on local processing, at each

node, as well as on interactions within the node’s neighborhood. One

possibility to achieve this goal is by consensus averaging (see for ex-

ample [6, 7]), where the nodes average the computed centroids of the

clusters and consensus on the centroids is achieved. In other words,

the nodes compute the same centroids and consequently the same

clusters. This is a crucial point for the labeling problem, since if the

devices have computed the same clusters, the labeling can be readily

performed.

3.1. Hierarchical Feature Extraction: Correlating the Sepa-

rated Energy–Signatures

The first feature, which will be extracted, is related to the energy–

signature of the speech signals, which can be expected to be similar

across the nodes of the network.

To be more specific, let us denote the speech signals by

s̃n[i], n = 1, . . . , N , where i stands for the (sampling) time in-

dex. The instantaneous energy of signal n, given a block of length

L, at sample time iL is equal to

sn[i] =
L−1∑

l=0

s̃2n[iL+ l]. (1)

In a similar fashion, we define the instantaneous energy at micro-

phone j by

yj [i] =

L−1∑

l=0

ỹ2
j [iL+ l], (2)

where ỹj [·] is the signal of the j–th microphone. Stacking the en-

ergy related signals in vectors, while assuming that the signals s̃n,

n = 1, . . . , N , are mutually independent and neglecting any rever-

beration effects over the block edges (see [8] for more details), it

holds that

y[i] ≈ As[i], (3)

where s[i] = [s1[i], . . . , sN [i]]T , y[i] = [y1[i], . . . , yJ [i]]
T , and

A is the J ×N mixing matrix, whose j, n–th element describes the

power attenuation between the respective speech sources and the mi-

crophones. Algorithms, which compute both A and s[i], have been

proposed in [9], by employing the Non–Negative Principal Compo-

nent Analysis (NNPCA), and in [10, 8] by using the Non–Negative

Independent Component Analysis (NNICA). In the current study,

we focus on the latter approach. Since it is expected that all nodes

extract “similar” estimates of the sources’ energies as a function of

time (something that is verified by the experiments), we show that

these energy signatures can serve as features in a distributed label-

ing task.

The system of (3) implies that the information is centrally avail-

able, e.g., in a fusion center, which is not the case in the considered

scenario. One could think, first, to perform the decomposition at

node level. However, as it is documented in [8], NNICA requires

sufficient spatial diversity between the microphones, which is ob-

viously not satisfied at a node level. We thus adopt a hierarchical

approach. In particular, we consider that a network–clustering1 al-

gorithm, e.g., [11], is performed.2 This formation of subnetworks is

illustrated in Fig. 2a.

1One should not confuse the network–clustering, which divides the net-
work in subnetworks, with the feature–clustering, which is employed for the
labeling task.

2In the hierarchical clustering, we assume that a node of each subnetwork
performs all the essential computations and sends the information to the other
nodes of the subnetwork.
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C1

C2
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(a) The network of Fig. 1 is divided into subnetworks C1, C2, C3.

The NNICA is then computed within each subnetwork for the

estimation of the energy signals.

(b) Energy signals corresponding to speech source S2 computed by

the NNICA at subnetworks C1, C2.

The model, in that case, can be recast as follows:

yk[i] ≈ Aks[i], k = 1, . . . , K, (4)

where the subscript k denotes the subnetwork index and K stands

for the total number of subnetworks. After this step, the NNICA

is performed for k = 1, . . . ,K and the nodes of the subnetwork

compute the estimated energy signals of the speech sources of the

network. Fig. 2b displays two energy signals estimated by subnet-

works C1 and C2 via the NNICA, corresponding to the same speech

source S2. Clearly, these signals are similar and, thus, they can po-

tentially serve as features in the distributed clustering task, as will be

discussed in Section 4.

3.2. Non-hierarchical Feature Extraction: Exploiting Similari-

ties in the Frequency Bands which Produce Reliable Direction-

of-Arrival Estimates

Non–hierarchically organized networks are able to extract features

without forming subnetworks. One promising approach is to ex-

tract features based on high resolution Direction-of-Arrival (DoA)

estimation. However, DoA information cannot be applied directly

to labelling, since, in general, the devices in an WSN do not know

their positions and array orientations. Furthermore, in the consid-

ered setup, due to the uniform linear array configuration, and the use

of omnidirectional microphones, an ambiguity in the DoA estimates

along the symmetry axis of the array orientation cannot be resolved.

We thus propose a novel feature which exploits the similarity

across devices in the particular frequency bins that produce “good”

DoA estimates for each source. The DoA is estimated with the

Khatri-Rao (KR) subspace approach for locally stationary wide band

signals. The idea of KR methods is to form a new array signal model

by use of the KR-product, which generates a virtual array response

matrix that is of greater dimension than the original physical array

[12]. In this way, KR methods can identify up to N = 2J ′ − 2 un-

known sources in undetermined mixing systems of J ′ sensors. We

estimate the DoA based on the spatial KR–MUSIC spectrum, which

is given by:

PKR−MUSIC(θ) =
1

‖UH
n W 1/2b(θ)‖2

, (5)

where the superscript H is the hermitian operator, Un is an estimate

of the noise subspace matrix that exploits the local stationarity of

the speech signals by averaging over stationary segments, and is

computed as described in [12],

b(θ) = [e(J−1) j2πd
λ

sin(θ), . . . , 1, . . . , e−(J−1) j2πd
λ

sin(θ)]T rep-

resents a dimension reduced virtual array response vector, and

W = Diag(1, 2, ..., J − 1, J, J − 1, ..., 2, 1). The N largest peaks

serve as DoA estimates. Full details on KR-MUSIC are given in

[12].

Fig. 2 displays the estimated DoA for S2 and S3 at devices D1

and D14. The overall DoA for each source θ̂n, n = 1, . . . , N,
is obtained by taking the median of θ̂n(f) with 0 < f < fs/2.

The dashed lines indicate the σ̂n-interval around θ̂n. If the DoA

is estimated correctly, θ̂n(f) is centered around the median. How-

ever, due to noise in particular subbands, or due to interference from

other sources, the distribution of the estimates may be heavy-tailed,

as it contains outliers. It is therefore necessary to estimate σn ro-

bustly [13], e.g., with the median absolute deviations scale estima-

tor. In this way, the source specific frequency bands that typically

contribute to correct DoA estimates are selected. Our proposed fea-

ture vector is formed for each source at each device by storing the

frequency bin indexes within θ̂n ± σ̂. Section 4 discusses how this

feature is used in the labeling task.
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Fig. 2: The proposed non–hierarchical feature displays which fre-

quency bins produce “good” DoA estimates for each source at dif-

ferent nodes. The underlying DoA estimates from which the feature

is derived are displayed for D1 (top) and D14 (bottom), given S2
and S3, with positions, as depicted in Fig. 1.

4. DISTRIBUTED CLUSTERING

In this Section, we will show how the previously extracted features

are used for distributed clustering. Ideally, we would like each clus-

ter to contain every feature corresponding to the same speech source.
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We achieve this by employing a cooperative clustering scheme, in

the sense that, if a node cooperates with its neighbors, and these co-

operate, in turn, with their neighbors, the information coming from

the whole network, is incorporated. Our starting point is the dis-

tributed clustering methodology presented in [6]. We adapt this al-

gorithm so as to fit with the current context. The steps are summa-

rized in the sequel.

1. Initialization: The nodes (subnetworks) initialize the centroids

c
(k)
n (0), n = 1, . . . , N so that c

(k)
n (0) = c

(l)
n (0). Methodologies

for selecting the initial centroids so as to satisfy the above equality

can be found in [6, Section 7.7].

2. Local Clustering Phase: Each node (subnetwork) k, at iteration

i, performs a local clustering scheme by employing a K–means al-

gorithm [14], which uses the computed features and the previously

computed centroids c
(k)
n (i − 1). For the DoA related features each

feature is assigned to the cluster, for which the Euclidean distance

between the feature vector and the centroid is minimized, whereas

for the energy–based features each feature is assigned to the cluster,

in which the correlation coefficient between the energy-signatures is

maximized. In both cases, the local/temporal centroids c̃
(k)
n (i) are

computed for n = 1, . . . , N .

3. Cooperation Phase Node l belonging to the neighborhood of k is

activated with a certain probability (see also [7]). For simplicity, we

assume that node k picks some neighbor l with probability 1/Nk,

where Nk is the number of neighbors of k. Nodes k, l update their

centroids n = 1, 2, . . . , N according to:

c
(m)
n (i) =

c̃
(k)
n (i) + c̃

(l)
n (i)

2
, m = k, l.

After the computation of the clusters, the labeling can be readily

performed. The label of each speech signal will be set equal to the

number of the class, in which the respective feature belongs.

Remark 1 It is important to point out that, each of the proposed fea-

tures has its own pros and cons. In particular, the energy based fea-

ture, as it will become apparent in the simulations section, exhibits

a better accuracy, compared to the DoA based feature. However, the

former requires a hierarchical network and the process takes place

over the full–time signal. On the contrary, the labeling accuracy of

the DoA features is slightly degraded, but they can be computed at

node level and they are estimated on a single much shorter interval

of only 0.5 seconds.

Remark 2 The averaging that is taking place in the cooperation

phase of the algorithm drives the nodes of the network to centroid

consensus; that is, the nodes compute, after a sufficient number of

iterations, the same centroids. We consistently observed this behav-

ior in extensive experiments. Furthermore, centroid consensus has

been proved in [4], for a distributed K–means algorithm of similar

flavor to the one employed here.

5. SIMULATIONS

In this Section, we study the performance of the proposed distributed

labeling approach. We consider the network depicted in Fig. 1 and

we will validate the accuracy of the labeling, using both of the pro-

posed features. The speech signal S1 corresponds to a woman mak-

ing a public announcement, whereas S2 and S3 consist of two male

speakers that are reading sentences in different languages. We used

the mirror image method [15] to synthesize room impulse responses

that can be used to compute the signals captured by microphones

at arbitrary positions in a reverberant enclosure with multiple sound

sources. The proposed methodology is not compared to other tech-

niques, since to the best of our knowledge, an algorithm suitable for

distributed labeling has not been proposed, yet, in the literature.

In the first experiment, we consider that two speech sources, i.e.,

S2, S3, are active. We assume that both babble and white noise are

present in the environment. Two nodes of the network are assumed

to be connected if their distance is smaller than 4.5 meters. The vari-

ance of the noise processes is varied, so as to validate the accuracy in

different noise scenarios. The sampling frequency of the microphone

signals is fs = 16kHz. Moreover, for the energy related feature, the

network is divided in subnetworks as depicted in Fig. 2a. There, it

is considered that C2, C3 can exchange information with C1 but

they cannot communicate between each-other. The energy of the

signals is computed at intervals of 30ms, corresponding to L = 480.

The DoA based features are only computed on a single short interval

of 0.5 seconds, where all sources are active. Table 1 summarizes the

Table 1: Source Labeling: Results for the Two Source Scenario

SNR DoA related Features Energy–Based Features

10 100% 100%

3 89% 100%

0 65% 100%

results. It can be seen that the clustering accuracy, using the DoA es-

timates, drops as the variance of the noise increases. On the contrary,

using the energy–based features, our proposed algorithm is able to

label correctly the speech sources. This advantage comes at the cost

of forming a hierarchical network.

In the second experiment, we consider the more challenging sce-

nario, where all the sources, namely S1, S2, S3, are active in the

network. The parameters remain the same as in the previous example

and the noise variance are varied as depicted in Table 2.

Table 2: Source Labeling: Results for the Three Source Scenario

SNR DoA related Features Energy–Based Features

10 80% 100%

0 60% 82%

As it is expected, the performance drops compared to the two

source scenario. Similarly to the previous experiment, a better accu-

racy is achieved by employing the energy–based features. It is worth

pointing that, the performance of the labeling algorithm is degraded,

due to the fact that some nodes of the network are located in posi-

tions, in which they are not able to hear all the speech sources. How-

ever, in the feature extraction phase, we force the devices to assume

that 3 sources are active and to form 3 clusters. A preprocessing,

through which the number of active sources in a node is computed

could potentially enhance the results.

6. CONCLUSIONS

We have studied the problem of labeling speech signals in distributed

environments. Our proposed methodology first derived features, re-

lated to the energy–signature of each source and the source specific

frequencies which contribute to “good” DoA estimates. Then, the

sources were labeled with a distributed clustering technique. Exper-

iments showed that the proposed methodology is able to accurately

label speech signals in a practical scenario.
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