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ABSTRACT

A common problem in image analysis is the transformation-
invariant estimation of the similarity between a query image and a
set of reference images representing different classes. This typically
requires the comparison of the distance between the query image
and the transformation manifolds of the reference images. The tan-
gent distance algorithm is a popular method that estimates the man-
ifold distance by employing a linear approximation of the transfor-
mation manifolds. In this paper, we present a performance analysis
of the tangent distance method in image classification applications
for general transformation models. In particular, we characterize the
misclassification error in terms of the geometric properties of the in-
dividual manifolds such as their curvature, as well as their relative
properties such as the separation between them. We then extend our
results to a multi-scale analysis where the images are smoothed with
a low-pass filter and study the effect of smoothing on the misclassi-
fication error. Our theoretical results are confirmed by experiments
and may find use in the selection of algorithm parameters in multi-
scale transformation-invariant image analysis methods.

Index Terms— Tangent distance, image classification, hierar-
chical image registration, performance analysis.

1. INTRODUCTION

In image analysis problems where different classes are represented
by different manifolds generated by the geometric transformations of
a reference image, classification can be achieved by measuring the
distance of the query image to the transformation manifold of each
class. In order to compute the manifold distance, the query image
is aligned with the reference class-representative images, which is
generally not an easy problem due to the nontrivial form of the trans-
formation manifold. The tangent distance method is a well-known
alignment algorithm that constructs a first-order approximation of
the transformation manifolds of the reference images by computing
the tangent space of the manifold at a reference point. The transfor-
mation parameters are then estimated by calculating the orthogonal
projection of the target image onto the tangent space of the manifold.

The tangent distance method has been proposed by Simard et
al. and its efficiency has been demonstrated in numerous settings,
such as handwritten digit recognition applications [1], [2]. Follow-
ing [1], many variations on the tangent distance method have been
presented. The work in [3], for example, introduces the joint man-
ifold distance for transformation-invariance in clustering, which is
a similarity measure that is based on the prior distributions of the
images and the distance between the linear approximations of their
manifolds. It is common to apply the tangent distance method in

The work was performed while the first author was at EPFL.

a hierarchical manner, by using a sequence of smoothed versions
of the images with low-pass filters [2], [4]. The multiscale tangent
distance method aims to get around the limitation that the reference
point around which the manifold is linearized should be sufficiently
close to the exact projection of the target image onto the manifold.

The efficiency of the hierarchical tangent distance algorithm has
been observed in many applications. However, the previous works
performing a theoretical study of this algorithm are confined to opti-
cal flow literature (which becomes the equivalent of the tangent dis-
tance method for 2-D translation models) [5], [6], [7], and the clas-
sification performance of the tangent distance method for general
geometric transformation models has not been theoretically studied
yet.

In this paper, we build on our previous work [8], where we
study the performance of image registration with the tangent dis-
tance method. We present a theoretical analysis of the properties of
the multiscale tangent distance method in image classification ap-
plications. We consider a setting where the query image and the
reference images representing different classes are smoothed with
low-pass filters, and the projection of the query image onto the trans-
formation manifolds of the reference images is estimated with the
tangent distance method. We first derive an upper bound on the
misclassification probability of a query image for generic geomet-
ric transformation models, where we assume a bounded and non-
intersecting distribution of the query images around the transforma-
tion manifolds of their classes. We characterize the misclassification
probability in terms of the geometric properties of the manifolds, the
deviation of query images from the class-representative manifolds,
and the separation between the classes. We then examine the varia-
tion of the misclassification probability with the size of the low-pass
filter in a setting where the smoothed versions of the reference and
query images are used in the registration. Our analysis shows that,
the misclassification probability has a non-monotonic variation with
the filter size. Hence, there is an optimal value of the filter size that
minimizes the misclassification error. Our results are confirmed by
experiments on transformation models consisting of translations, ro-
tations, and scale changes.

2. OVERVIEW OF THE TANGENT DISTANCE METHOD

2.1. Image Registration with the Tangent Distance Method

Let p ∈ L2(R2) be a reference pattern that is C2-smooth with
square-integrable derivatives and q ∈ L2(R2) be a target pattern.
Let Λ ⊂ Rd denote a compact, d-dimensional transformation pa-
rameter domain and λ = [λ1 λ2 · · · λd] ∈ Λ be a transformation
parameter vector. We denote the pattern obtained by applying to p
the geometric transformation specified by λ as pλ ∈ L2(R2). Defin-
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ing the spatial coordinate variable X = [x y]T in R2, we have

pλ(X) = p(a(λ,X)) (1)

where a is a function representing the change of coordinates defined
by the transformation λ. In this work, we treat general transforma-
tion models and assume that λ can represent any parametrizable ge-
ometric transformation such that a : Λ× R2 → R2 is a C2-smooth
function and aλ(X) := a(λ,X) is a bijection for a fixed λ.

The transformation manifoldM(p) of the pattern p is given by

M(p) = {pλ : λ ∈ Λ} ⊂ L2(R2)

which consists of transformed versions of p over the parameter do-
main Λ. Since a and p are C2-smooth, the first and second deriva-
tives of manifold points exist. We denote the derivative of the mani-
fold point pλ with respect to the i-th transformation parameter λi as
∂i pλ, where ∂i pλ(X) = ∂ pλ(X)/∂λi. The derivatives ∂i pλ cor-
respond to the tangent vectors ofM(p) on pλ. Similarly, we denote
the second-order derivatives by ∂ij pλ(X) = ∂2pλ(X)/∂λi∂λj .
Then, the tangent space TλM(p) of the manifold at a point pλ is the
subspace generated by the tangent vectors at pλ

TλM(p) =
n
∂i pλ ζ

i : ζ ∈ Rd
o
⊂ L2(R2) (2)

where {∂i pλ}di=1 are the basis vectors of TλM(p), and {ζi}di=1 are
the coefficients in the representation of a vector in TλM(p) in terms
of the basis vectors.1

Now, given the reference pattern p and a target pattern q, the im-
age registration problem consists of the computation of an optimal
transformation parameter vector λo that gives the best approxima-
tion of q with the points pλ onM(p),

λo = arg min
λ∈Λ
‖q − pλ‖2 (3)

where ‖ · ‖ denotes the L2-norm for vectors in the continuous space
L2(R2) and the `2-norm for vectors in the discrete space Rn. Then,
the transformed pattern pλo is called a projection of q onM(p).

The exact calculation of λo is difficult in general, because of the
nonlinear and highly intricate geometric structure of pattern transfor-
mation manifolds. The tangent distance method simplifies this prob-
lem to a least squares problem, where the transformation parameters
are estimated by using a linear approximation of the manifoldM(p)
and then computing λo by minimizing the distance of q to the linear
approximation of M(p) [4], which is illustrated in Figure 1. The
estimate λe of λo with the tangent distance method is given by the
solution of the following least squares problem

λe = arg min
λ∈Rd

‖q − pλr − ∂i pλr (λi − λir)‖2 (4)

whose solution is obtained as

λie = λir + Gij(λr)〈q − pλr , ∂j pλr 〉 (5)

where Gij(λ) = 〈∂i pλ, ∂j pλ〉 is the metric tensor induced from the
standard inner product on L2(R2), [Gij(λ)] ∈ Rd×d is the matrix
representation of the metric tensor, and Gij represents the entries of
the inverse [Gij(λ)]−1 of the metric. We can then define the align-
ment error of tangent distance as ‖λe − λo‖, which represents the
deviation between the estimated and the optimal transformation pa-
rameters. In [8], we present an upper bound on the alignment error
‖λe − λo‖ and study how it varies with the smoothing of the refer-
ence and target images with a Gaussian low-pass filter.

1In (2) and several other equations, we use the Einstein notation to sim-
plify the writing. In Einstein notation, an index variable appearing twice in
a term (once in a superscript and once in a subscript) indicates a summation;
i.e.,

Pd
i=1 viw

i is simply written as viw
i.
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Fig. 1. Image alignment with the tangent distance method. The
estimate λe of the optimal transformation parameters λo is obtained
by computing the orthogonal projection of the target image q onto
the linear approximation Sλr (p) of the manifold around pλr .

2.2. Image Classification with the Tangent Distance Method

We now consider a setting with M class-representative patterns
{pm}Mm=1 whose transformation manifolds

M(pm) = {pmλ : λ ∈ Λ} ⊂ L2(R2)

are used for the classification of query patterns q ∈ L2(R2) in the
image space. We assume that the correct class label l(q) of a query
pattern q is given by the class label of the manifold M(pm) with
smallest distance to it, i.e.,

l(q) = arg min
m∈{1,...,M}

‖q − pmλmo ‖ (6)

where λmo = arg minλ∈Λ ‖q − pmλ ‖ is the optimal transformation
parameter vector corresponding to the projection of q onM(pm).

Let λme denote the estimate of λmo computed with the tangent
distance method as in (5) by linearizing the manifoldM(pm) around
a reference point with parameter vector λmr . The class label of q is
then estimated with the tangent distance method as follows2

l̃(q) = arg min
m∈{1,...,M}

‖q − pmλme ‖. (7)

Our purpose is then to study the performance penalty when the
class label of a query pattern is estimated as above by using first-
order approximations of the manifolds. We focus on the accuracy of
classifying a query image with a one-step application of the tangent
distance method, i.e., by estimating the transformation parameters
{λmo } with a single linearization of each manifold, possibly by low-
pass filtering the query and reference images (a detailed study of
the hierarchical estimation of transformation parameters is given in
[8]). We study the performance of classification in this setting and
its dependence on the low-pass filter size.

3. ANALYSIS OF THE TANGENT DISTANCE METHOD

3.1. Single-scale analysis

We analyze the classification performance by considering a setting
where the query images of class m have a distribution that is con-
centrated around the manifoldM(pm). We then examine the proba-
bility of correctly classifying q based on the distance estimates given
by the tangent distance method.

2Note that the class label of a query image can also be estimated by com-
paring its distance to the first-order approximations of the manifolds. While
Simard et al. use this subspace distance for classification [2], the estimate
in (7) is also commonly used in image analysis problems (e.g., as in [4]).
We base our analysis on the definition in (7) since it is likely to give more
accurate estimates, especially with multiscale generalizations as in (11).
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Let νj = ‖q − pj
λ
j
o
‖ denote the deviation of a query image q

from the manifoldM(pj) of class j. Furthermore, let q belong to
class m. The distance of q to M(pm) is the smallest among the
distances of q to all manifolds; therefore, νm < νj for all j 6=
m. Let us assume that the distributions of the images belonging to
different classes have bounded and non-intersecting supports around
the manifolds, so that the classification rule in (6) always gives the
true class label. We can then define the following parameters. Let

Vm := sup
q: l(q)=m

˘
‖q − pmλmo ‖

¯
denote the maximal distance of query patterns of classm to the man-
ifold M(pm) of their own class, which can be considered as the
maximal noise level. Let also

ε := min
m=1,...,M ; j 6=m

inf
q: l(q)=m

n
‖q − pj

λ
j
o
‖ − ‖q − pmλmo ‖

o
define a distance margin that is a measure of the minimum separation
between different classes. Finally, let

Tm := max
i=1,...,d

sup
λ∈Λ
‖∂i pmλ ‖ (8)

denote the supremum of the tangent norm onM(pm) and Km be a
curvature parameter ofM(pm) given by

Km := max
i,j=1,··· ,d

sup
λ∈Λ
‖∂ij pmλ ‖. (9)

We then have the following result, which provides an upper bound
for the probability of misclassifying a target image of class m.

Theorem 1. Let q be a query pattern of classm. Assume that the op-
timal transformation parameters λmo aligning q with pm are within
a ∆-neighborhood of the reference transformation parameters λmr
around whichM(pm) is linearized, such that ‖λmo − λmr ‖1 ≤ ∆.
Then, the probability of misclassifying q with the tangent distance
method is upper bounded as

P
“
l̃(q) 6= l(q)

”
≤ (M − 1)

ε
Tm
√
dKm η−1

min

`
[Gmij (λmr )]

´
„

1

2

q
tr([Gmij (λmr )]) ∆2 +

√
d Vm ∆

«
where d is the dimension of the manifolds, [Gmij (λmr )] denotes the
metric tensor of manifoldM(pm) at the point corresponding to λmr ,
and ηmin(·) represents the smallest eigenvalue of a matrix.

The proof of Theorem 1 is given in [9, Appendix E.2]. The
above result is obtained by deriving a relation between the the prob-
ability of misclassification and the alignment error of tangent dis-
tance. The misclassification probability is then bounded using the
alignment error upper bounds derived in [8].

Theorem 1 shows how the probability of misclassification when
the manifold distances are estimated with the tangent distance
method, depends on the geometric properties of the manifolds and
on the deviation ∆ between the reference and the optimal trans-
formation parameters. In particular, for any non-intersecting and
bounded distribution of class samples, the misclassification proba-
bility increases at most linearly with the increase in the manifold
curvature and the maximal distance of the images to their own
representative manifold. The deviation ∆ between the reference
and optimal transformation parameters affects the misclassification
probability since it influences the alignment accuracy. Note that, if a

prior estimation of the transformation parameters is available (e.g.,
as in a hierarchical alignment setting), the reference transformation
parameters λmr can be set accordingly. Otherwise λmr is taken as
the identity transformation. It is also observed that better separation
of manifolds (i.e., increase in the distance margin ε) reduces the
misclassification probability, as expected. We finally remark that
the result in Theorem 1 is based on the tangent and curvature def-
initions in (8)-(9), which depend on the chosen coordinate system,
and the parameter domain distance ∆ between the transformation
parameters. These coordinate-dependent definitions are particularly
interesting in the image registration context as these parameters have
immediate physical interpretations. For instance, in an application
where rotated images are classified, ∆ would quantify the maximum
degree of rotation, while Tm and Km would measure the sensitivity
of the rotated images to the amount of rotation.

3.2. Multi-scale analysis

We now discuss the classification of images with the tangent dis-
tance method in a multiscale setting and study the effect of smooth-
ing. Consider that the transformation parameters are estimated by
low-pass filtering the query image and the reference images with a
Gaussian filter kernel

1

πρ2
φρ(X) =

1

πρ2
e
− x

2+y2

ρ2 (10)

of size ρ, which has unit L1-norm. We thus consider that the tangent
distance method uses the filtered versions

p̂m(X) =
1

πρ2
(φρ ∗ pm)(X), q̂(X) =

1

πρ2
(φρ ∗ q)(X)

of the reference images pm and the query image q for aligning q
with pm. From (5), the estimates of the transformation parameters
are obtained as (λ̂ie)

m = (λir)
m + (Ĝij)m(λmr )〈q̂ − p̂mλr , ∂j p̂

m
λr 〉,

where the notation (̂·) stands for the counterparts of the parameters
in the previous section that correspond to the filtered versions of the
patterns. Once the transformation parameters are estimated, we as-
sume that the unfiltered versions of the reference images and the
query image are used in the computation of the actual distances to
the manifolds for estimating the class label of the query image. It
is preferable to compare the distances in the original image space
rather than the space of filtered images, as it yields more accurate
estimates. The class label of the query pattern is thus estimated as

l̃(q) = arg min
m∈{1,...,M}

‖q − pmλ̂me ‖. (11)

In image classification with multiscale tangent distance, the filter
size should be selected to make the above estimate l̃(q) as accurate
as possible. Hence, it is important to characterize the variation of the
misclassification probability with the size ρ of the low-pass filter. In
the following theorem, we provide an upper bound on the rate of
variation of the classification error with ρ.

Theorem 2. The probability of misclassifying q with the multiscale
tangent distance method is upper bounded as

P
“
l̃(q) 6= l(q)

”
≤ Eρ :=

(M − 1)

ε
Tm
√
d K̂m η−1

min

`
[Ĝmij (λmr )]

´
„

1

2

q
tr([Ĝmij (λmr )]) ∆2 +

√
d V̂m ∆

«
.
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The misclassification probability bound Eρ varies with the filter size

ρ as Eρ = O
“

1 + (1 + ρ2)−1/2 + (Vm + 1) (1 + ρ2)1/2
”

if the
transformation model includes a scale change of the pattern, and
Eρ = O

“
1 + (1 + ρ2)−1/2 + Vm (1 + ρ2)1/2

”
if the transforma-

tion model does not include a scale change of the pattern.
Proof. The upper bound Eρ on the misclassification probability is a
direct implication of Theorem 1. Comparing the expression of Eρ
and the alignment error upper bound in [8] (presented in [9, The-
orem 1]), one can observe that they only differ by a multiplicative
factor (note, however, that the value of this factor depends on the ge-
ometric properties of the manifolds through the parameters Tm and
ε). Therefore, the misclassification probability upper bound has the
same variation with the filter size as the alignment error upper bound
in [9, Theorem 1]. Combining this observation and the variation of
the alignment error with the noise level and the filter size presented
in [8] (available in [9, Theorem 2]), we obtain the stated result.

Theorem 2 shows that the misclassification probability has
a nonmonotonic variation with the filter size. The first compo-
nent of Eρ related to the manifold curvature decreases at a rate of
O
“

1 + (1 + ρ2)−1/2
”

with the filter size ρ. Filtering makes the
manifold smoother and decreases the manifold curvature, which im-
proves the accuracy of the first-order approximation of the manifold.
However, the second component of the misclassification probability
associated with noise increases with the filter size and the noise
level at a rate of O

“
(Vm + 1) (1 + ρ2)1/2

”
. This is due to the fact

that filtering has the undesired effect of amplifying the alignment
error caused by noise. This result is in line with the findings of
our previous study [10], and previous works such as [5], [11] that
examine the Crámer-Rao lower bound in image registration.

For sufficiently small values of the image noise level, the mis-
classification probability Eρ first decreases with the filter size ρ due
to the first term, and then starts to increase with the filter size due to
the second term. Therefore, there exists an optimal value of the filter
size ρ that minimizes the misclassification probability. The optimal
value of ρ depends on the parameters of the classification problem.
The maximal distance Vm is related to the internal variation (noise
level) of the data samples within the same class and depends on how
well the reference pattern pm approximates the samples of its own
class, whereas the parameter ∆ can be set according to the maximum
amount of transformation that the data samples are likely to undergo
in the application at hand.

4. EXPERIMENTAL RESULTS

We now experimentally study the image classification performance
when manifold distances are computed with the tangent distance
method. We experiment on two classes of synthetic images. The ref-
erence pattern of each class consists of 20 randomly chosen Gaus-
sian atoms (generated by applying random geometric transforma-
tions to a Gaussian mother function) such that 16 of the atoms are
common between the two classes and 4 atoms are specific to each
class. This configuration simulates a setting where different classes
contain class-specific features as well as common features. We then
generate a set of test patterns that lie between the transformation
manifolds of the two reference patterns. The test patterns are gen-
erated such that their true class labels are given by the class label of
the closer manifold as in (6). We classify the test patterns with the
tangent distance method as in (11), where transformation parameters
are estimated from the low-pass filtered versions of the images. We
experiment on a transformation model consisting of a 2-D transla-
tion, rotation and a scale change; and test the classification accuracy
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Fig. 2. Classification results for synthetic patterns.

at different filter sizes. In Figure 2(a), the percentage of misclassi-
fied test patterns is plotted with respect to the filter size. In order to
interpret the variation of the experimental misclassification rate with
the filter size in light of our theoretical results, we define a func-

tion Tm K̂m η−1
min

`
[Ĝmij (λmr )]

´`
1
2

q
tr([Ĝmij (λmr )]) ‖λ̂o − λr‖21 +

√
d ‖ñm‖ ‖λ̂o − λr‖1

´
for the test patterns, where ‖ñm‖ is the

distance between the filtered test pattern q̂ and the transformation
manifoldM(p̂m) of the filtered reference pattern representing class
m. This function has the same variation with the filter size ρ as the
misclassification probability bound Eρ, while it is easier to compute
experimentally. As it provides a measure for the misclassification
probability, we call this function the “misclassification likeliness”.
The average value of the misclassification likeliness is plotted in Fig-
ure 2(b). Comparing panels (a) and (b) of Figure 2, we observe that
the variation of the experimental misclassification probability with
filtering agrees with that of the analytical misclassification likeli-
ness. This shows that the misclassification probability upper bound
in Theorem 2 captures well the behavior of the actual misclassifica-
tion probability. The experimental results confirm that the misclassi-
fication probability has a non-monotonic variation with the filter size
as predicted by Theorem 2, and the optimal filter size minimizing the
misclassification probability is in the vicinity of the filter size that
minimizes the misclassification likeliness. In [9], we present further
experiments on the classification of digit images, which we skip here
due to lack of space. These experiments also confirm the findings of
our theoretical analysis and suggest that the best classification per-
formance is obtained at large filter sizes for real images, where the
main source of misclassification is the manifold nonlinearity due to
the high-frequency components prominent in real images.

5. CONCLUSIONS

We have presented an analysis of image classification with the
tangent distance method, which aligns the query image and the
class-representative reference images by linearizing the transforma-
tion manifolds of the reference images. We have presented an upper
bound on the probability of misclassification for generic transfor-
mation models. The misclassification probability depends on the
individual geometric properties of the manifolds such as their metric
and curvature, as well as the separation between the manifolds and
the deviation of query images from the manifold of their own class,
i.e., noise level. We have then studied the variation of the misclassi-
fication probability when the tangent distance method is applied in a
multiscale setting, and shown that there exists an optimal value of the
low-pass filter size that minimizes the misclassification probability.
Our study provides useful insight for optimizing the performance of
multiscale methods relying on first-order manifold approximations
in the analysis and classification of images.
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