
PARTICLE FILTERING WITH OBSERVATIONS IN A MANIFOLD

Salem Said

CNRS, Université de Bordeaux
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ABSTRACT

This paper describes the application of particle filtering to the so-
lution of the problem of filtering with observations in a manifold.
Mathematically, this is based on an original use of so-called con-
nector maps. It is shown that well-chosen connector maps can be
used to transform successive samples from a continuous time ob-
servation process, evolving on a manifold, into a discrete sequence
of random vectors, which are asymptotically independent and nor-
mally distributed, in the limit where the sampling interval goes to
zero. Roughly speaking, this “innovation sequence” can be used as
the input of a sequential Monte Carlo algorithm. As a concrete appli-
cation, numerical simulation results are presented, for the problem
of estimating the angular velocity of a rigid body from noisy obser-
vations of its attitude.

Index Terms— Stochastic filtering, Particle filtering, Differen-
tiable manifold, Lie group, Angular velocity

1. PROBLEM STATEMENT

The problem considered in this paper belongs to the general class
of continuous time stochastic filtering problems. Such problems
are stated in terms of two stochastic processes, the signal process
{Xt; t ≥ 0}, and the observation process {Yt; t ≥ 0}. Given some
dynamical models for the processes X and Y , the aim is to compute
the posterior distribution πt, distribution of Xt given observations
Yt = {Ys; s ≤ t}.

The case which has received most attention is the “additive white
noise case”, where X is a Markov process with state space S, and
Y is a diffusion process with values in a Euclidean space Rd [1, 2].
Precisely, Y is given by a dynamical model, (stochastic differential
equation),

dYt = H(Xt)dt+ dBt (1)

where H : S → Rd is called the sensor function, and B is a standard
Brownian motion with values in Rd. This setting will be said to
define a classical filtering problem.

Starting in the 1980s, there has been interest in the problem of
filtering with observations in a manifold, which is a generalisation
of the classical filtering problem [3, 4, 5, 6]. With X just as before,
this new problem assumes Y is a diffusion process with values in
a smooth manifold M . A dynamical model for Y is defined by a
mapping H : S × M → TM , such that H(s, y) ∈ TyM , (this
means H is a vector field on M , parameterised by s ∈ S), some
vector fields V1, . . . , Vq on M , and a standard Brownian motion B
in Rq . Then Y is given by the stochastic differential equation [5, 6]

dYt = H(Xt, Yt)dt+

q∑
r=1

Vr(Yt) ◦ dBr
t (2)

where ◦dBr
t denotes the Stratonovich differential.

In the following, Section 2 recalls the closed form solution of the
problem of filtering with observations in a manifold, in the form of
a generalised Kallianpur-Striebel, (KS), formula. Section 3 is con-
cerned with the use of connector maps. Section 4, describes the ap-
plication of particle filtering to the evaluation of the KS formula of
Section 2, and Section 5 applies the results of Section 4 to the prob-
lem of estimating the angular velocity of a rigid body from noisy
observations of its attitude. Before going on, the reader should con-
sult Section 6, for background and references to previous work.

2. CLOSED FORM SOLUTION : THE KS FORMULA

The closed form solution of the classical filtering problem is given
by the KS formula, which may be thought of as an abstract Bayes
formula for the posterior distribution πt [1]. In existing literature [3,
4, 5], various generalisations of the KS formula, to the problem of
filtering with observations in a manifold, have been proposed. Re-
cently [6], the authors presented a new generalisation, which is now
described. This is formula (6) below.

Assume first the process Y , as given by (2), is elliptic. This
means that for y ∈ M , the vectors V1(y), . . . , Vq(y) span the tan-
gent space TyM . Then, there exist on M a Riemannian metric ⟨·, ·⟩
and a connection ∇, uniquely determined by the following proper-
ties [6],

⟨K,E⟩ =
q∑

r=1

⟨K,Vr⟩⟨Vr, E⟩ (3)

q∑
r=1

∇VrVr = 0 (4)

While the connection ∇ is compatible with the metric ⟨·, ·⟩, it is
different from the corresponding Levi-Civita connection, in general.

The generalised KS formula (6) involves the Itô integral of a
vector field along the observation process Y . If K is a vector field
along Y , then its Itô integral along Y is defined by∫ t

0

⟨K, dYs⟩ =
∫ t

0

⟨K,Hs⟩dt+
q∑

r=1

∫ t

0

⟨K,Vr(Ys)⟩dBr
s (5)

where Ht = H(Xt, Yt). While (5) is found from (2) by formally
replacing the Stratonovich differentials ◦dBr

t by the Itô differentials
dBr

t , it takes some work to show this formula indeed has all the
required properties of a stochastic integral, (for instance, that it only
depends on the vector field K and the observation process Y ). For
this, the reader is referred to [7, 8].

It is now possible to state the closed form solution of the prob-
lem of filtering with observations in a manifold, in the form of a
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generalised KS formula [6]. Assume the state space S of the signal
process X is a complete separable metric space.

Proposition 1 The posterior distribution πt is given by
∫
φ(s)πt(ds)

∝
∫
φ(s)ρt(ds), where the unnormalised posterior ρt is given by∫

φ(s)ρt(ds) = E
[
φ(X̃t)Lt(X̃)

∣∣∣Y∞

]
(6)

for any bounded Lipschitz continuous function φ on S. Here, “∝”
means “proportional to”, where the constant of proportionality en-
sures that

∫
πt(ds) = 1. Moreover, X̃ is a process having the same

distribution as X , but independent of the observations Y . The like-
lihood process L(X̃) is given by

Lt(X̃) = exp

( ∫ t

0

⟨H̃, dYs⟩ −
1

2

∫ t

0

∥Hs∥2 ds

)
(7)

where H̃t = H(X̃t, Yt), and ∥Ht∥2 = ⟨Ht, Ht⟩.

For any practical implementation of the KS formula (6), it is nec-
essary to discretise it in a suitable way. This will be done using
connector maps, which are considered in the following section.

3. NUMERICAL SOLUTION : CONNECTOR MAPS

This section considers the use of connector maps, in the solution of
the problem of filtering with observations in a manifold. Recall that
a connector map is a smooth function I : M×M → TM , such that
I(p, q) ∈ TpM , for all p, q ∈ M . The vector I(p, q) is intended to
be a tangent vector at p, which “connects p and q” [9].

To consider connector maps in the context of the problem of
filtering with observations in a manifold, assume samples {Ykδ; k ∈
N}, of the observation process Y , are given, and let ∆Yk =
I(Ykδ, Y(k+1)δ). Below, it is stated that connector maps, when
chosen adequately, can be used in two ways.

First, they allow for Itô integrals, as defined in (5), to be approx-
imated by Riemann sums, with limit in the square mean,∫ t

0

⟨K, dYs⟩ = lim
δ→0

∑
(k+1)δ<t

⟨Kkδ,∆Yk⟩ (8)

Second, the vectors {∆Yk; k ∈ N} are asymptotically indepen-
dent and normally distributed, in the limit δ → 0. This justifies
thinking of the vectors ∆Yk as an “innovation sequence” for the
samples Yk, once δ has been taken small enough.

To state this property precisely, let E1, . . . , Ed be a parallel or-
thonormal frame along Y . That is, E1, . . . , Ed are vector fields
along Y , with ⟨Ei

t , E
j
t ⟩ = δij for all t ≥ 0, (δij = 1 if i = j

and = 0 if i ̸= j), and such that each Ei verifies the equation
of stochastic parallel transport along Y [8]. Each ∆Yk is deter-
mined by its components ∆Y 1

k , . . . ,∆Y d
k in the orthonormal basis

E1
kδ, . . . , E

d
kδ . The joint distribution of these components verifies

P
(
δ−

1
2

(
∆Y i

k − δ ×Hi
kδ

)∣∣∣∆Y0, . . .∆Yk−1,Xkδ

)
→ Nd (9)

where the limit is taken as δ → 0. Here, the left hand side denotes
conditional distribution, Hi

t = ⟨Ei, Ht⟩, and Nd denotes the stan-
dard normal distribution on Rd. Asymptotic independence follows
since Nd does not depend on ∆Y0, . . .∆Yk−1.

It is clear that both properties (8) and (9) are desirable. However,
they will not hold for an arbitrary choice of the connector map I .
Rather, it is necessary to choose I in a way which is attuned to the

dynamics of the observation process Y . Proposition 2, below, states
that (8) and (9) hold if I verifies the following conditions, (where Ip
is the mapping Ip(q) = I(p, q), for p, q ∈ M ),

dIp(p)(V ) = V ∇2Ip(p)(V, V ) = 0 (10)

for all V ∈ TpM , where dIp,∇2Ip denote the derivative and the
Hessian of Ip, the latter being with respect to the connection ∇ de-
fined by (4) — See definition in [10].

Proposition 2 Assume the manifold M is compact. If I is a connec-
tor map which verifies (10), then (8) and (9) are verified.

To appreciate the usefulness of this proposition, consider its condi-
tions. Compactness of M is imposed to ensure the limit (8) holds in
the square mean. It could be dropped if a weaker notion of conver-
gence is used, (convergence in probability). Condition (10) defines
a choice of connector maps which guarantee (8) and (9).

The proposition tells us that, in principle, any connector map can
be used, as long as it verifies (10). Thus, in practice, if a mapping I is
being used, which is difficult to compute, (e.g. highly nonlinear), it
is possible to replace it by another mapping I ′, which is much easier
to deal with. This will incur no noticeable loss in performance if the
sampling interval δ is sufficiently small.

The class of connector maps I which verify (10) is never empty.
For any manifold M with the metric and connection (3) and (4),
the mappings I known as geodesic connectors will verify (10).
Roughly [9], a connector map I is a geodesic connector if for
any p, q ∈ M which are close enough to each other, I(p, q) is
the initial velocity of a geodesic curve γ : [0, 1] → M such that
γ(0) = p, γ(1) = q. In this case, one writes Ip(q) = logp(q),
where logp is the Riemannian logarithm of the metric (3).

An elementary example of a geodesic connector is when M =
Rd, with (3) and (4) defined based on the classical filtering problem
(1). Then, a geodesic connector is naturally given by I(p, q) = q−p.
For most cases beyond this elementary example, geodesic connec-
tors are highly nonlinear mappings and one should prefer to avoid
them in numerical implementations. Here is an example of how
Proposition 2 allows this to be done, (a further, related, example can
be found in Section 5).

Let M be the group of rotation matrices, SO(3). Let the vector
fields V1, V2, V3 be left invariant vector fields, corresponding to rota-
tions around the three axes of a positive orthonormal frame [11]. The
metric (3) and connection (4), are then defined by⟨Vi, Vj⟩ = δij and
∇ViVj = 0, for i, j = 1, 2, 3. A geodesic connector can be defined
by

I(p, q) = logp(q) = p log(p†q) (11)

with † denoting transposition, and log the antisymmetric matrix log-
arithm. Proposition 2 allows for the highly nonlinear formula (11) to
be replaced by its first order approximation,

I ′(p, q) =
1

2

(
q − p q†p

)
(12)

This construction may be used in filtering problems arising in navi-
gation, localisation and computer vision [12, 13].

For lack of space, a detailed proof of Proposition 2 cannot be
given, but will be included in an upcoming journal submission. The
main idea of the proof is to consider the process y with values in Rd

and whose components are yi
t =

∫ t

0
⟨Ei, dYs⟩, where E1, . . . , Ed

is a parallel orthonormal frame along Y . Let ∆yi
k = yi

(k+1)δ − yi
kδ .

The proposition follows by showing ∆Y i
k and ∆yi

k are asymptoti-
cally equal, as δ → 0. For example, (9) follows from the fact that y
satisfies a stochastic differential equation of the form (1), so the ∆yk
are independent normally distributed, (this was shown in [6]).
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4. NUMERICAL SOLUTION : PARTICLE FILTERING

This section describes a sequential Monte Carlo algorithm for sam-
pling from the posterior distribution πt. Starting from the closed
form representation of πt, given by the KS formula (6), the design of
the proposed algorithm will involve two steps, i) obtaining a suitable
discretisation of formula (6), and ii) using sequential importance-
resampling, (SIS), to evaluate this discretisation. These are now pre-
sented in detail.

i) Discretisation of the KS formula : Consider the issue of dis-
cretising the KS formula (6). Thinking of this formula as an abstract
Bayes formula, it is natural to attempt a discretisation which replaces
it with a “concrete” Bayes formula, i.e. one of the usual form

posterior ∝ prior × likelihood (13)

Such a discretisation can also be viewed as replacing the original
continuous time filtering problem, with a discrete time filtering prob-
lem. The key to achieving this is property (9) of Section 3.

Indeed, recall that a connector map I can be used to construct
vectors ∆Yk = I(Ykδ, Y(k+1)δ) from successive samples Ykδ of
the observation process Y . Property (9) states that, when the sam-
pling interval δ becomes small, these vectors are asymptotically in-
dependent and normally distributed. Precisely, the asymptotic con-
ditional distribution of the components ∆Y i

k does not depend on
∆Y0, . . . ,∆Yk−1, but only on the signal X . This distribution is nor-
mal, with covariance δ × Id, (here, Id is the d × d identity matrix),
and with mean δ ×Hi

kδ .
Taking this to hold exactly, (mathematically, this means replac-

ing exact expressions with asymptotic ones), it is possible to write

P(∆Yk|Xkδ) ∝ exp

(
⟨Hkδ,∆Yk⟩ −

δ

2
× ∥Hkδ∥2

)
(14)

for the conditional distribution of ∆Yk given Xkδ . Indeed, this fol-
lows immediately by writing down the expression of the normal dis-
tribution of the ∆Y i

k , with covariance and mean described above.
Let πδ

k denote the distribution of Xkδ given ∆Y0, . . . ,∆Yk.
If the transition kernel of the Markov sequence {Xkδ; k ∈ N} is
known, then it is straightforward to write πδ

k in the form (13). In-
deed, the sequences {Xkδ} and {∆Yk} satisfy the usual assump-
tions of a discrete time filtering problem.

Moreover, see [14], expression (13) for πδ
k can be reformulated

as follows∫
φ(s)πδ

k(ds) ∝ E
[
φ(X̃kδ)L

δ
k

∣∣∣∆Yk; k ∈ N
]

(15)

Here, the constant of proportionality ensures
∫
πδ
k(ds) = 1, and

the likelihood Lδ
k = Lδ

k(X̃0, . . . , X̃kδ) is equal to the product
l(X̃0,∆Y0)× . . .× l(X̃kδ,∆Yk), where

l(s,∆Yk) = exp

(
⟨Hk(s),∆Yk⟩ −

δ

2
× ∥Hk(s)∥2

)
(16)

with, Hk(s) = H(s, Ykδ) for any s in the state space S, (this is the
same as the right hand side of (14)).

ii) SIS implementation : Consider the task of sampling from
the distribution πδ

k. In view of the representation (15) of this dis-
tribution, this task can be realised using the SIS strategy [15, 16].
This implies simulating N particles {x̃i; i = 1, . . . , N}, which ap-
proximately follow the trajectories of the sequence {Xkδ}, and as-
sociating importance weights {wi; i = 1, . . . , N} to these particles,
which are updated according to the “marginal likelihoods” (16).

As X is a continuous time process, it is often not possible to sim-
ulate its trajectories exactly. Assume however that a transition kernel
q(s, ds′) is given on S, such that if {xk} is a Markov sequence with
the same initial distribution µ of X0 and with transition kernel q, it
holds that,

E
[
d2S(Xt, xk)

]
= O(δ) kδ ≤ t < (k + 1)δ (17)

where dS(·, ·) is the metric in the state space S. One says that {xk}
converges to X with strong order of convergence 0.5 [17].

The following algorithm can now be stated. At its kth iteration,
it processes the vector ∆Yk to produce particles x̂1

k, . . . , x̂
N
k which

approximately sample from πδ
k.

When ∆Yj becomes available

(1) if j = 0 : generate N particles x̃i
j ∼ µ

set wi
−1 = 1/N

if j > 0 : generate N particles x̃i
j ∼ q(x̂i

j−1, ds)

(2) compute normalised weights, wi
j ∝ wi

j−1l(x̃
i
j ,∆Yk)

(3) generate (n1
j , . . . , n

N
j ) ∼ multinomial(w1

j , . . . , w
N
j )

and replace x̃i
j by ni

j particles with same value

(4) relabel the new particles x̂1
j , . . . , x̂

N
j ; set wi

j = 1/N

The above algorithm is one of several possible variants of an
SIS strategy for sampling from πδ

k. However [15, 16], other variants
differ only by modifications to instruction (3), (resampling), and are
essentially the same for the present purpose.

Proposition 3, below, gives the convergence of the algorithm.
To state this proposition, let π̂δ

k be the empirical distribution of the
particles x̂1

k, . . . , x̂
N
k . That is,∫
φ(s)π̂δ

k(ds) =
1

N

N∑
i=1

φ(x̂i
k) (18)

For t ≥ 0, let k(t) be the largest k such that kδ ≤ t and put π̂δ
k(t) ≡

π̂t.
The following condition will be required for the statement. As-

sume there exist constants A,B such that for all s, s′ ∈ S and
y ∈ M ,

∥H(s, y)∥ ≤ A and ∥H(s, y)−H(s′, y)∥ ≤ B (19)

Proposition 3 Assume the manifold M is compact. Assume also
conditions (10), (17) and (19) are verified. For any bounded Lips-
chitz continuous function φ on S, and any t ≥ 0

lim
δ↓0

lim
N↑∞

E
∣∣∣∣∫ φ(s)π̂t(ds)−

∫
φ(s)πt(ds)

∣∣∣∣2 = 0 (20)

A detailed proof of proposition 3 will be included in an upcoming
journal submission. The main argument in this proof is the follow-
ing. By a result in [18], π̂δ

k converges to πδ
k, (in the sense of (20)),

as N ↑ ∞. On the other hand, property (8) can be used to show
that πδ

k(t) converges to πt, as δ ↓ 0. Then, (20), follows easily by
combining these two limits.

The convergence result (20) may seem weak, as it involves a
fixed “test function” φ. However, this result implies almost sure
weak convergence of π̂t to πt, by a usual argument using the fact
that S is separable and complete [1].
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5. NUMERICAL EXAMPLE

This section presents numerical simulation results, for the applica-
tion of the sequential Monte Carlo algorithm of the previous section,
to the problem of estimating the angular velocity of a rigid body,
from noisy observations of its attitude. This problem arises in space-
craft navigation, under the name of gyroless estimation [19, 20].

Assume a rigid body, (e.g. robot, vhicle, or satellite), is perform-
ing rotational motion. Determination of its attitude would require
knowing its orientation with respect to three, reference, orthonor-
mal directions. However, here, it is assumed this orientation is only
known with respect to one reference direction. Mathematically, at
time t ≥ 0, this is represented by a unit vector Yt.

Consider the resulting process Y with values on the unit sphere
S2 ⊂ R3. In the absence of any noise or uncertainty, Y exactly rep-
resents the orientation of the body, so its evolution is given by [21]

dYt

dt
= −Yt ×Xt (21)

where Xt, a vector in R3, is the angular velocity and × denotes
cross product. Here, the prsence of noise or observation uncertainty
is modeled by the stochastic differential equation

dYt = −Yt × {Xtdt+ ◦dBt} (22)

where B is a Brownian motion in R3.
A continuous time filtering problem is obtained if one wishes to

estimate the angular velocity X , from observations of the attitude Y .
Recall [1, 2], indeed, that the optimal least squares estimator of Xt,
based on observations Yt, is the first order moment of the posterior
distribution πt, distribution of Xt given Yt.

In the following, it will be shown that the dynamical model (22)
can be recast in the form (2). Then, the algorithm of Section 4 will
be specified and applied to the case where X is a constant, Xt ≡ x.

To rewrite equation (22), consider three vector fields V1, V2, V3,
defined on S2 as follows, for y ∈ S2 with y = (y1, y2, y3),

V i
r (y) =

3∑
j=1

ϵr,ijyj (23)

where V i
r (y) are the coordinates of the vector Vr(y), and ϵr,ij is

alternating, (changes sign when two indices are exchanged), with
ϵ1,23 = −1. Also, let H : R3 × S2 → TS3 be given by

Hi(s, y) =
3∑

j=1

3∑
r=1

ϵr,ijsryj (24)

Replacing (23) and (24) in (2), (with the Brownian motion B be-
ing written B = (B1, B2, B3)), a direct calculation leads to (22).
This shows the problem under consideration is of the general form
introduced in Section 1.

In order to apply the algorithm of Section 4 to this problem, it is
necessary to find a suitable connector map I , which satisfies condi-
tion (10). Recall this expression involves the metric and connection
(3) and (4).

By verification of (3) and (4), it is possible to show the required
metric ⟨·, ·⟩ and connection ∇ are none other than the usual Rie-
mannien metric and Levi-Civita connection on S2. Therefore, as
remarked in the discussion after Proposition 2, Section 3, it is al-
ways possible to take for I a geodesic connector. In the present case,
this can be written

I(p, q) =
arcsin ∥Πp(q)∥

∥Πp(q)∥
Πp(q) (25)

−5 0 5
−5

0

5
x1, x2 plane

−5 0 5
−5

0

5
x1, x3 plane

−5 0 5
−5

0

5
x1, x2 plane

−5 0 5
−5

0

5
x1, x3 plane

Fig. 1. Particles distribution (grey); estimate (◦); true value (+)

where Πp(q) = p × q × p, and ∥ · ∥ denotes Euclidea length in
R3. Another connector map, which also verifies condition (10), but
which is much less costly, in terms of computation, is

I(p, q) = Πp(q) (26)

which results from (25), in the limit where ∥Πp(q)∥ is small.
This connector map was used in implementing the algorithm of

Section 4, for the case where Xt ≡ x is constant, x = (0, 0, 1). Fig-
ure 1 shows the distribution of N = 1000 particles in the (x1, x2)
and (x1, x3) planes at times T = 1.5 (top row) and T = 3 (bottom
row), with the sampling interval δ being equal to 0.02.

In the figure, the + designates the position of x, while the ◦ des-
ignates the arithmetic mean of the particles. The particles were ini-
tially generated from a normal distribution µ with mean (0.5, 0.5, 1)
and variance 1. A large value of N was chosen for visualisation. It
is possible to use N = 100 with a similar performance.

Figure 1 shows the algorithm of Section 4 is able to recover x
using 150 samples Ykδ , from the observation process. It is inter-
esting to note the larger variability of the particle distribution in the
x3 direction, apparent in the right column of the figure. This is be-
cause Y0 = (0, 0, 1), so that, initially, the component of x along this
direction has no effect on the position of Y .

6. RELATION TO PRIOR WORK

A special case of the filtering problem studied in the present paper
was treated in [12], using a similar sequential Monte Carlo approach.
In [12], the authors only considered the case where the manifold M
is a Stiefel manifold. The present paper provides a fully general
framework.

Theoretical foundation for both papers comes from [6], whose
main idea is to extend the approach of [13], from Lie groups to gen-
eral manifolds.

Readers who are unfamiliar with stochastic calculus in mani-
folds should consult the highly readable introduction [7].

In the mathematics literature, connector maps were defined
in [9]. The present paper introduces their application to the problem
of filtering with observations in a manifold. In the field of optimisa-
tion on manifolds, a closely related general construction for iterative
algorithms can be found in [22].
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