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ABSTRACT

In this paper, we address the problem of multimodal signal process-
ing and present a manifold learning method to extract the common
source of variability from multiple measurements. This method is
based on alternating-diffusion and is particularly adapted to time se-
ries. We show that the common source of variability is extracted
from multiple sensors as if it were the only source of variability, ex-
tracted by a standard manifold learning method from a single sensor,
without the influence of the sensor-specific variables. In addition, we
present application to sleep stage assessment. We demonstrate that,
indeed, through alternating-diffusion, the sleep information hidden
inside multimodal respiratory signals can be better captured com-
pared to single-modal methods.

Index Terms— Common variable, alternating-diffusion, diffu-
sion maps, multimodal, sleep

1. INTRODUCTION

In recent years, there has been a growing effort to develop analy-
sis methods based on low dimensional geometry driven by measure-
ments. Among the emerging methodologies is Manifold Learning,
e.g., ISOMAP [1], locally linear embedding (LLE) [2], Hessian and
Laplacian Eigenmaps [3, 4], and Diffusion Maps [5, 6]. The core
of manifold learning often resides in the construction of a kernel
based on local connections between the samples of a signal. Then,
these local connections are aggregated into a global representation,
usually through an eigenvector problem. Under the appropriate con-
ditions, manifold learning yields a low dimensional representation
of the main structures of the data. However, since the measurements
are typically influenced by various nuisance and interfering factors,
manifold learning might capture a combination of the desired as well
as the undesired structures.

A particular problem of interest is multimodal signal processing,
where the same physical phenomenon is measured using multiple
types of instruments or sensors. As a result, each set of related mea-
surements of the same phenomenon has a different geometric struc-
ture, depending on the specific instrument. This poses a significant
obstacle to existing methods, since each additional sensor introduces
additional redundant sources of variability, while the ultimate goal is
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to describe the physical phenomenon independently of the way it is
measured. Here, we address the multimodal problem from a (data-
driven) manifold learning standpoint. The multimodal case presents
a challenge to manifold learning, since multiple sensors often in-
crease the number of undesired structures. Nevertheless, multiple
sensors enable us to recover a more reliable description of the mea-
sured physical phenomenon if we can extract the common source
of variability from the different measurements while suppressing the
sensor-specific factors.

The widely-used Canonical Correlation Analysis (CCA) is de-
signed to extract the common source of variability from multiple
measurements [7] . However, the applicability of this approach is
limited when the relations between the common source of variability
and the measurements are nonlinear. Several nonlinear methods to
analyze data from multiple sensors have been proposed based on ker-
nel CCA [8] or [9], combining affinities [10], constructing Markov
chains [11, 12], aggregating features [13], and cross-diffusion [14].
However, these methods are not designed to distinguish between the
common variable and the sensor-related variables.

Recently, we have presented a manifold learning method based
on alternating-diffusion to extract the common source of variability
from multimodal measurements [15]. In this paper, we extend this
method to time series, in which we assume that the driving sources
of variability are independent. We show that the common source of
variability is extracted by this method from multiple sensors as if it
were the only source of variability, extracted by a standard manifold
learning method from a single sensor, without the influence of the
sensor-specific variables. In addition, we present application to sleep
stage assessment. We demonstrate that, indeed, through alternating-
diffusion, the sleep information hidden inside multichannel signals
can be better captured compared to single-channel methods.

2. PROBLEM FORMULATION

Consider three hidden random variables (X,Y, Z) ∼ π(X,Y, Z),
from the (possibly high dimensional) spacesX , Y andZ . Following
standard practice (e.g., principal component analysis (PCA) [16]),
we assume that the variables are statistically independent, i.e., their
joint probability density π(X,Y, Z) is given by

π(X,Y, Z) = πx(X)πy(Y )πz(Z), (1)

where πx, πy , and πz are the marginal densities of X , Y , and Z,
respectively, and they have unit variances.

These hidden variables are measured through two random vari-
ables S = g(X,Y ) and R = h(X,Z) from the (possibly high
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dimensional) spaces S andR, where g and h are two unknown mea-
surement functions with suitable regularity conditions.

From n realizations of the system, we have n triplets of the hid-
den variables {(xi, yi, zi)}ni=1 and n pairs of corresponding mea-
surements {(si, ri)}ni=1. We refer to si and ri as the measurement
in Sensor 1 and the measurement in Sensor 2, respectively. We note
that both si and ri are functions of xi, to which we refer as the com-
mon variable, whereas yi and zi are the sensor-specific variables.

Our goal is to recover a parameterization of the samples of
the common variable {xi}ni=1 from the pairs of measurements
{(si, ri)}ni=1.

3. MAHALANOBIS DISTANCE

Under the assumption that the hidden variables X , Y and Z are in-
dependent, Singer and Coifman [17] showed that the Euclidean dis-
tance between the variables can be locally estimated from the sensor
measurements to the second order by:

‖(xi, yi)− (xj , yj)‖22 = ‖si − sj‖2md +O
(
‖si − sj‖42

)
(2)

where ‖ · ‖md is the Mahalanobis distance given by

‖si − sj‖2md =
1

2
(si − sj)T (C†i + C†j)(si − sj) (3)

and C†i is the pseudo-inverse of the covariance matrix Ci of S eval-
uated locally at i. In case of time series, the covariance Ci can
be estimated from samples in a short-time window around i by the
sample covariance [18, 19]. We remark that the approximation (2)
is obtained by the Taylor expansion of the function g and will be
combined with an exponentially decaying kernel, where the approx-
imation error becomes negligible. For more details, we refer the
readers to [17, 20]. Similarly, we have

‖(xi, zi)− (xj , zj)‖22 = ‖ri − rj‖2md +O
(
‖ri − rj‖42

)
(4)

with an analogous definition of the Mahalanobis distance based on
samples from Sensor 2. For simplicity, we omit the sensor index
from the Mahalanobis distance notation.

4. ALTERNATING DIFFUSION

We begin by separately constructing affinity matrices W(s) and
W(r) from the measurements of each sensor based on a Gaussian
function and the Mahalanobis distance as follows:

W
(s)
ij = exp

(
−‖si − sj‖2md/ε

)
W

(r)
ij = exp

(
−‖ri − rj‖2md/ε

)
(5)

for all i, j = 1, . . . , n, where ε is the kernel’s scale. For simplic-
ity, we use a single scale, set to be the square of the median of the
distances. However, we can use different scales for the different
measurements.

Then, two diffusion operators (Markov matrices) K(s) and K(r)

are created by dividing each column of the kernel by its sum as

K
(s)
ij = W

(s)
ij /

n∑
l=1

W
(s)
lj ;K

(r)
ij = W

(r)
ij /

n∑
l=1

W
(r)
lj (6)

Based on K(s) and K(r), the alternating propagation from the
i-th sample is defined as a sequence of vectors {vt}∞t=0 such that

vt+1 =

{
K(s)vt, t = 2m

K(r)vt, t = 2m+ 1
(7)

for every integer m ≥ 0, where the initial vector v0 is a vector of
dimensionality n of all zeros, except for the i-th position, which is
assigned the value 1, i.e., v0 = (0, . . . , 0, 1, 0, . . . , 0)T , where we
omit the dependency on i for simplicity. It follows that the even steps
of the propagation in (7) can be restated as

v2m = Kmv0. (8)

where K is the alternating-diffusion (Markov) matrix

K = K(r)K(s). (9)

We define the diffusion distance between Sample i and Sample
j based on the alternating-diffusion as the following Euclidean dis-
tance

dt(i, j) = ‖vt − ut‖2, (10)
where vt and ut are vectors in the propagation sequences (defined
in (7)) from Sample i and Sample j, respectively. The diffusion
distance has been shown to be a powerful metric of comparing sam-
ples that is invariant to small topological distortions and moderate
noise [6,21]. While the Euclidean distance compares two individual
samples, the diffusion distance integrates other samples and mea-
sures the relationship of the two samples via the entire sample set.
We will show in Section 5 that the new alternating-diffusion opera-
tor K can be viewed as an “effective” diffusion operator, and that it
captures the structure of the common variable and ignores the vari-
ables specific to either sensor. It follows that the diffusion distances
computed from the accessible measurements (si, ri) are equivalent
to diffusion distances computed from data, where the common vari-
able is the only source of variability.

The diffusion distance is typically approximated through low-
dimensional features, traditionally, using the eigenvalue decomposi-
tion (EVD) or the singular value decomposition (SVD) of K. Here,
the SVD is applied to Kt, and the right-singular vectors {ψ`}n`=1

associated with the large singular values {λ`}n`=1 are used to define
an embedding. Let Ψi,t denote the d-dimensional embedding of the
pair (si, ri), defined by

Ψi,t : (si, ri) 7→ (λ1ψ1(i), λ2ψ2(i), . . . , λdψd(i))
T . (11)

We remark that a possible refinement of the algorithm is a sec-
ond application of diffusion maps with a kernel based on the dif-
fusion distances [15], i.e., the Euclidean distances between the
low-dimensional features (11).

The extension of the algorithm to measurements from multiple
sensors is straightforward. Let K(1), . . . ,K(m) denote the kernels
corresponding to measurement sets from m sensors, computed sim-
ilarly to (5) and (6). Then, the alternating-diffusion Markov matrix
is given by

K = K(m) · · ·K(1). (12)

5. ANALYSIS

Following standard practice in diffusion geometry, the analysis pre-
sented here is in the continuous domain [5,6]. We define the contin-
uous counterpart of the kernel of Sensor 1 by

K(s)((x, y), (x′, y′)) =
1

ω(s)(x′, y′)
e−‖s−s

′‖2md/ε, (13)

where s = g(x, y), s′ = g(x′, y′), and ω(s)(x′, y′) is a normaliza-
tion factor defined (using the independence of X and Y ) by

ω(s)(x′, y′) =

∫
X ,Y

e−‖s
′′−s′‖2md/επx(x′′)πy(y′′)dx′′dy′′ (14)
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Fig. 1. The sensitivity and the specificity of the sleep stage classification per individual. The thin gray curves represent the classification
results based on the single channels (light gray - airflow, dark gray - abdominal motion), and the thick blue curve represents the classification
results from the alternating diffusion.

where s′′ = g(x′′, y′′) .
By combining (2) with the exponentially decaying Gaussian, the

kernel is asymptotically separable with respect to the independent
variables, i.e.,

K(s)((x, y), (x′, y′)) = K(x)(x, x′)K(y)(y, y′) (15)

where

K(x)(x, x′) =
1

ω(x)(x′)
e−‖x−x

′‖2/ε (16)

K(y)(y, y′) =
1

ω(y)(y′)
e−‖y−y

′‖2/ε (17)

and the normalization factors are

ω(x)(x′) =

∫
X
e−‖x

′′−x′‖2/επx(x′′)dx′′ (18)

ω(y)(y′) =

∫
Y
e−‖y

′′−y′‖2/επy(y′′)dy′′ (19)

For a function p : X × Y × Z → R, the continuous diffusion
operation D(s) of Sensor 1 is given by(

D(s)p
)

(x, y, z) =

∫
X ,Y,Z

K(s)((x, y), (x′, y′))p(x′, y′, z′)

× π(x′, y′, z′)dx′dy′dz′ (20)

The continuous diffusion operator D(r) of Sensor 2 is defined in an
analogous manner.

By combining the single-modal diffusion operators D(s) and
D(r), we construct an alternating-diffusion operator. For a function
p0 : X ×Y×Z → R, we define a sequence of propagated functions
{pt}∞t=0 by

pt+1(x, y, z) =


(
D(s)pt

)
(x, y, z), ∀t = 2m(

D(r)pt
)

(x, y, z), ∀t = 2m+ 1
(21)

where m ≥ 0 is a nonnegative integer and p0(x, y, z) is typically
a function with support only at an initial point (x, y, z), which in-
creases along the diffusion process.

Thus far, we have presented the continuous counterpart of the
discrete diffusion described in Section 4, which can be computed
directly from the measurements. Now, we introduce the effective
function p(e)t (x) : X → R, which is defined by

p
(e)
t (x) =

∫
Y,Z

pt(x, y, z)πy(y)πz(z)dydz. (22)

Theorem 1. For every t ≥ 1, the effective function p(e)t+1(x) is re-
lated to the preceding effective function p(e)t (x) by

p
(e)
t+1(x) =

(
D(e)p

(e)
t

)
(x) (23)

where D(e) is the effective diffusion operator defined by(
D(e)p(e)

)
(x) =

∫
X
K(x) (x, x′) p(e)(x′)πx(x′)dx′ (24)

Proof. The proof is obtained by substituting (24), (22), (21), (20),
and (15) into (23) and changing the order of integration.

In other words, Theorem 1 implies that the alternating-diffusion
of propagating functions on the measurements is effectively a diffu-
sion on “marginal-like” functions defined solely on the hidden com-
mon variable.

The effective functions p(e)t and the effective operator D(e) are
merely formal objects that are computed directly. Nevertheless, we
will relate the effective functions to the accessible propagating func-
tion through a distance metric.

Theorem 2. Suppose that {pt(x, y, z)} and {qt(x, y, z)} are two
sequences of propagated functions as defined in (21), and that
{p(e)t (x)} and {q(e)t (x)} are the corresponding sequences of effec-
tive propagated functions as defined in (22). Then, for t > 0

‖p(e)t (x)− q(e)t (x)‖M = ‖pt+1(x, y, z)− qt+1(x, y, z)‖π, (25)

where ‖ · ‖π is defined by

‖pt(x, y, z)‖π =

(∫
X ,Y,Z

p2t (x, y, z)π(x, y, z)dxdydz

)1/2

(26)
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Fig. 2. The average sensitivity and specificity of the sleep stage clas-
sification over the five individuals. The thin gray curves represent
the classification results based on the single channels (light gray -
airflow, dark gray - abdominal motion), and the thick blue curve rep-
resents the classification results from the alternating diffusion.

and ‖ · ‖M is defined by

‖p(e)t (x)‖π =

(∫
X ,X

p
(e)
t (x)M(x, x′)p

(e)
t (x′)

× πx(x)πx(x′)dxdx′
)1/2 (27)

M(x, x′) =

∫
X
K(x) (x′′, x)K(x) (x′′, x′)πx(x′′)dx′′ (28)

Proof. We refer the readers to the proof of Theorem 5 in [15], where
the result is obtained by plugging-in (15).

In other words, the effective operator D(e) generates a diffusion
on X , and although the sequences of effective functions are not ac-
cessible directly, the diffusion distance associated with D(e) can be
computed from the data.

6. EXPERIMENTAL RESULTS

We applied the alternating diffusion to sleep recordings to assess the
sleep stage of an individual. Physiologically, sleep is divided into
two broad stages: rapid eye movement (REM), and non-rapid eye
movement (NREM) [22]. The NREM stage is further divided into
shallow sleep (stages N1 and N2) and deep sleep (stage N3). To
assess sleep, various signals are typically recorded. Among these
signals, EEG signals are the most concentrated, since the clinically
acceptable stage of the sleep is majorly determined by reading the
recorded EEG based on the R&K criteria [23,24]. However, it is well
known that sleep is a global and systematic behavior not localized
solely in the brain. In particular, there have been several studies of
the sleep stage analysis based on the respiratory signal [25–29].

In [30], we considered the model in which there exists an evolu-
tionary hidden process restricted to a low-dimensional Riemannian
manifold and governing the respiratory signals. The idea that lies
behind the model is that the accessible respiratory signal is a mea-
surement of the neural system controlling the sleep cycle. While
it can be affected by numerous factors related to the measurement
modality (e.g., measurements of airflow or chest movements), the
equipment (e.g., the type of sensors and their exact positions) and
noise, the true intrinsic variable we have interest in is the intrinsic
state controlling the respiratory signal.

In this paper, we apply the alternating diffusion to extract the
common source of variability in abdominal motions, which are
recorded by the piezo-electric bands, as well as in airflow, which is
measured using thermistors and nasal pressure, both at the sampling
rate 100 Hz. These two measurements were chosen, since they were

shown to be the least informative with regard to sleep among the res-
piratory and EEG signals [30]. The primary idea is that the common
variable of the different respiratory signals (measured by different
types of instruments) recovers true physiological hidden process that
is well correlated with the sleep stage, and simultaneously, gets rid
of nuisance factors, which are sensor-specific.

Five subjects without sleep apnea were chosen for this study.
The demographic characteristics of these individuals fall within the
norm. We used 6 hour length recordings, which were performed
in the sleep center at Chang Gung Memorial Hospital (CGMH),
Linkou, Taoyuan, Taiwan. The institutional review board of the
CGMH approved the study protocol (No. 101-4968A3) and the en-
rolled subjects provided written informed consent. See [30] for more
details regarding the experimental setting and the collected data.

We consider five sleep stages in this study: Awake; REM; N1;
N2; N3. We computed three sets of data-driven embeddings from
the two channels of respiratory signals: airflow and abdominal mo-
tion. Each of the single-channel recording was preprocessed by ap-
plying the Scattering Transform [31], which was shown to improve
the regularity and stability of the signal with respect to various de-
formations [31]. Then, we computed the kernel for each channel
according to (5) and (6) and separately applied the SVD to each of
the kernels to obtain its diffusion maps embedding [6]. Finally, we
applied the alternating diffusion method by combining the two chan-
nels; the two kernels were combined to a single alternating diffusion
kernel according to (9) and applied SVD to obtain the embedding
(11) representing the common variable of the channels.

In order to evaluate the quality of the single and multiple modal
embeddings, the embedded samples are used as input to multiclass
support vector machine (SVM) with the radial basis function (RBF)
to classify sleep stages. To prevent over-fitting and confirm the clas-
sification result, we performed repeated random sub-sampling vali-
dation 25 times and evaluated the average. We randomly partitioned
the data into training dataset and validation dataset – the training
dataset comprised 80% of the samples and the rest are used to form
the validation dataset. The trained classifier based on the training
dataset is used to predict the sleep stages of the validation dataset.

Fig. 1 depicts the sensitivity and the specificity of the sleep
stage classification per individual. The thin gray curves represent
the classification results based on the single channels and the thick
blue curve represents the classification results from the alternating
diffusion. We observe that for most individuals, the classification re-
sults based on combined information is superior. To further demon-
strate the effectiveness of the alternating-diffusion in extracting a
true physiological variable, Fig. 2 depicts the average sensitive and
specificity over the five individuals. The results imply that extract-
ing the common source of variability indeed “filters” out nuisance
factors and enhances the correspondence to the true physiological
variable (the sleep stage), which is hidden in the respiratory signals.

The main purpose of this application is to demonstrate the abil-
ity of the alternating-diffusion to extract the common variable from
real-world multimodal measurements; we showed that the applica-
tion enhances the correspondence to the true physiological variable.
Since the alternating-diffusion method is completely data-driven, the
results imply the existence of information of the sleep stage underly-
ing the respiratory signals. Moreover, the improvement with respect
to single modal embeddings suggests that each sensor measure other
factors besides the sleep. Although the results do not improve the
state of the art, they show that sleep stage identification is possible
from the respiratory signal, and the results are comparable with the
results obtained based on EEG signals. We remark that these results
need to be validated on a larger dataset with more individuals.
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