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ABSTRACT

Speech intelligibility in noisy environments is still quite limited for
cochlear implant (CI) users. Classical beamformers such as the Gen-
eralized Sidelobe Canceller (GSC) can provide large improvements
in speech intelligibility for CI users. These algorithms have been
adopted from hearing aids and multimedia applications into the CI
field. However, their optimization taking into consideration the pe-
culiarities of electrical hearing with a CI has not yet been completely
investigated. This paper presents a novel method to optimize the per-
formance of a GSC for each individual CI user. We show through a
combination of objective and novel subjective measures, how much
distortion can be tolerated by a CI user without decreasing speech
intelligibility. Experimental results with 5 CI users show that a GSC
delivering just noticeable distortion is the one maximizing speech
intelligibility for CI users.

Index Terms— Beamformer, Cochlear Implant, Individualiza-
tion, Speech Leakage, MUSHRA.

1. INTRODUCTION

A cochlear implant (CI) is a small electronic device that is surgi-
cally implanted into the inner ear and can restore the hearing of a
profoundly deaf person. CI users need significantly higher signal-
to-noise ratios (SNRs) to achieve the same speech intelligibility as
normal-hearing listeners [1]. For this reason, speech enhancement
techniques have emerged to improve the SNR in noisy acoustic con-
ditions [2]. A well-known speech enhancement method is the use
of adaptive directional microphones like Beamforming (BF). BF is a
spatial filtering technique, which controls the directionality through
the combination of multiple microphones. That way, the beam-
pattern can be directed to the direction of the desired speech while
signals coming from other directions are attenuated. The effective-
ness of a CI highly varies for each patient and there is a wide varia-
tion of parameter calibration and sound perception for each individ-
ual CI user [3]. Although a large set of successful single- and multi-
channel noise reduction algorithms exist [4] [5] [2] [6] and almost all
implants have some strategies implemented in their processors, noise
reduction remains one of the big challenges of the acoustic process-
ing in CIs. All algorithms and techniques have a good performance
when the noise is coherent. However, their performance is reduced
when the CI user is in a noisy environment with many incoherent
noise sources, in reverberant rooms or in the presence of more inter-
fering speech sources [7]. In this paper, we study a state-of-the-art
monaural BF based on the Transfer Function Generalized Sidelobe
Canceller TF-GSC [8] [9]. This algorithm has been shown to be
more robust due to the use of relative transfer functions. However,
a mismatch between the estimated transfer functions used by the BF
and the real ones produce distortions in the desired target speech
signal. We hypothesize that this distortion, which is higher in rever-

berant environments or in a multi-talker environment, decreases the
speech intelligibility. The aim of this paper is to optimize the per-
formance of the BF for each individual CI user. Section 2 presents
the methodology, including the baseline BF and its individualization.
Section 3 shows the experimental results in CI users and Section 4
presents the conclusions.

2. METHODS

2.1. Baseline Beamformer

Figure 1 shows the structure of a TF-GSC, which consists of 3 main
parts: (1) A BF filter (W) including head related transfer functions
(HRTFs) focusing the beam in the desired direction creating a speech
reference; (2) A blocking matrix (B), which steers nulls in the direc-
tion of the speech source to create a noise reference; (3) Adaptive
noise canceller (ANC), which reduces the noise components in the
speech reference. In monaural CIs we are usually restricted to M=2

Fig. 1. Block diagram of a Generalized Sidelobe Canceller.

microphones placed in an ear piece positioned on the ear of a CI
user. We assume that we have a single speech source s(t) placed in
a reverberant environment, the mth microphone signal is given by:

xm(t) = am(t) ∗ s(t) + vm(t) = zm(t) + vm(t),m = 1, 2. (1)

where * is the convolution operator, am is the acoustic impulse re-
sponse from the speech source signal to the mth microphone, zm(t)
and vm(t) are the clean speech and the noise components received
at the mth microphone. BFs are generally efficiently implemented
in the frequency-domain using the Short Time Fourier Transform
(STFT). The STFT is computed in frames of length N . Let Xm(ω),
Am(ω), S(ω), Zm(ω) and Vm(ω) denote the STFTs of xm(t),
am(t), s(t), zm(t) and vm(t), respectively. If N is sufficiently
large, Eq. 1 can be approximated as:

X(ω) = A(ω)S(ω) + V(ω) = Z(ω) + V(ω), (2)

where, X(ω) = [X1(ω), X2(ω)]
T , and A(ω), Z(ω), and V(ω)

are defined similarly. It has been shown that a BF is equivalent
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to a linear filter, i.e.: Ỹ (ω) = HH(ω)X(ω). The GSC [10] is
an implementation of the minimum variance distortionless response
(MVDR) beamformer [11] [12] and it can be viewed as a decom-
position of the filter operation into two orthogonal subspaces, i.e.:
H(ω) = W(ω) − B(ω)G(ω), where W(ω) is a fixed BF filter of
size M , B(ω) is a blocking matrix of size Mx(M − 1) that spans
the null space of A(ω) and G(ω) represents the adaptive noise can-
cellation filter. The fixed BF can be designed such that the desired
component in the output signal is equal to the speech source com-
ponent m [13]: YFBF (ω) = W(ω)HA(ω)S(ω)

constrain
= S(ω) ,

which is equivalent to WH(ω)Ã(ω) = 1, where Ã(ω) is defined as:

Ã(ω) =
[ 1

A∗1(ω)

1

A∗2(ω)

]T
. (3)

Next the BF is normalized as:

WA(ω) =
Ã(ω)

||Ã(ω)||2
. (4)

The blocking matrix is designed to block the target speech and create
a noise reference. This is satisfied when BH(ω)A(ω) = 0. For
example, a blocking matrix can be created using estimated channel
transfer-function ratios. For a two microphone BF, B(ω) could be:

BH(ω) =
[
1 − A∗1(ω)

A∗2(ω)

]T
. (5)

The goal of the GSC is to compute an optimal adaptive noise can-
cellation (ANC) filter G(ω). This can be achieved by solving the
following optimization problem:

ming(ω)E{|WH
A(ω)Y(ω)−G∗(ω)BH(ω)Y(ω)|2}. (6)

The previous equation can be solved iteratively using the Normalized
Least Mean Squares (NLMS) algorithm.

The output of the GSC can be written as:

Ỹ (ω) = ỸFBF (ω)− Ỹ NC(ω), (7)

with,
Ỹ FBF (ω) = WH

A (ω)X(ω) (8)

Ỹ NC(ω) = G∗(ω)BH(ω)X(ω) (9)

It has been shown [3] that the GSC output signal can be decomposed
as:

Ỹ (ω) = S̃(ω)− S̃N (ω) + Ṽ (ω)− ṼN (ω), (10)

where
S̃(ω) = WH

A (ω)A(ω)S(ω),

Ṽ (ω) = WH
A (ω)V(ω),

S̃N (ω) = G∗(ω)BH(ω)A(ω)S(ω),

ṼN (ω) = G∗(ω)BH(ω)V(ω),

are the BF speech component, BF noise component, speech leakage
and residual noise component respectively. If W(ω) 6= WA(ω),
the speech component is not perfectly dereverberated and therefore
S̃(ω) 6= S(ω). If BH(ω)A(ω) 6= 0, the speech signal leaks into the
noise reference and causes that S̃N (ω) 6= 0, which usually results in
distortion of the target speech component. In this paper we want to
characterize the perception of speech leakage and distortion tolerated
by a CI user. Additionally we will investigate the optimal individual
trade-off between speech distortion and noise cancellation.

2.1.1. VOICE ACTIVITY DETECTOR (VAD)

Several techniques have been proposed to limit the speech distor-
tion. Some aim at reducing the speech leakage in the noise refer-
ences e.g. by constructing a more robust BM [14] or using adaptive
filters [13]. Another possibility is to limit the distorting effect of
the remaining speech leakage components by using a voice activity
detector (VAD) to update the ANC only during noise periods and
fix the weights when there is speech [15]. We included a VAD to
the TF-GSC to reduce the remaining speech distortion at the output.
The performance of the BF is strongly influenced by the accuracy
of the speech/non-speech classification of the VAD. In this paper we
used a VAD implementation as proposed by [16]. We have chosen
this algorithm because it is robust and allows us to control its accu-
racy by changing a single parameter, namely the speech probability
threshold (SPT). The SPT is used to decide whether a given frame
contains speech or not. Small SPT values make the VAD more con-
servative often labelling the signal as speech. We expect that when
the speech is wrongly detected as noise, the ANC will adapt the de-
sired signal producing more distortion at the BF output. In contrast,
if the noise is misclassified as speech, the ANC will stop the adap-
tation, and noise that changes quickly in time will not be attenuated.
Therefore, the SPT enables us to trade-off speech leakage and noise
reduction.

2.2. Beamformer Individualization

In order to optimize the SPT parameter of the VAD such that it pro-
duces maximum noise reduction but with non-perceivable speech
leakage distortion we designed the procedure presented in Figure
2.

Fig. 2. Process to individualize the SPT value for a BF.

Speech Database: The set of selected speech signals is the Ger-
man HSM Sentence Test [16], which consists of 30 lists of 20 every-
day sentences.

2.2.1. Environment Simulation

An office room was simulated generating three sources at −900, 00

and 900 at 1m distance from the center of the head of an artificial
listener. All three babble sources had the same level. We used the
HRTF dataset from [17] because it takes into consideration the ef-
fect of the head as in a conventional hearing aid. The three sources
were presenting a 4-talker babble noise, uncorrelated between each
source. The frontal speaker was also used to present the target speech
signal. The input SNR at the microphones was adjusted at 0dB.
Although the HRTFs provided three omnidirectional microphones
(front, middle, back) signals, only the front and back microphones
of the one ear, which are separated by 14.9 mm, were used.

2.2.2. Beamformer Implementation

The BF was based on the TF-GSC BF. It was implemented using
50% overlapping sine windows prior to applying STFT. The frame
length was set to N=1024 and the sampling frequency fs was 16
kHz. We averaged the anechoic HRTFs [17]. These filters were used
in the frequency domain and applied to match the fixed BF and the
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Table 1. Relation between speech distortion (SD) and noise reduc-
tion (NR) using babble noise in office room.

Babble SNR = 0 dB TF-GSC
SPT SD [dB] NR [dB]

0 0.21 -5.29
0.3 0.85 0.95
0.5 0.96 1.18

0.75 1.02 1.34
1 1.4 1.39

blocking matrix. Once the signal was filtered in the FFT domain they
were transformed back into the time domain using overlap and add.
Next ANC based on Normalized Least Mean Squares (NLMS) adap-
tive filter was applied to adaptively solve Eq. 6 in the time domain.
The NLMS steps size (µ=0.01) was chosen such that it produced
maximum SNR for an SPTV AD = 1 in the simulated environment.
It has to be noted that the NLMS could have been implemented in
the frequency domain saving an FFT operation. The output of the
BF was then fed directly to the input of a Nucleus CI which applied
the ACE sound coding strategy [18].

2.2.3. Objective Measures

Speech Distortion (SD): Our aim is to quantify the SD at the BF
output. The speech distortion is defined as:

SD =
∑
∀ω

10log10
(PS(ω)

PS̃(ω)

)
U(ω), (11)

where PS̃(ω) and PS(ω) are the PSD of S̃(ω) and S(ω) respec-
tively. We weight the distortion measure according to the frequen-
cies that are most important for speech intelligibility U(ω) [19].

Noise Reduction (NR):NR is evaluated as:

NR =
∑
∀ω

10log10
(PV (ω)

PṼ (ω)

)
U(ω), (12)

where PṼ (ω) and PV (ω) are the PSD of Ṽ (ω) and V (ω) re-
spectively. Table 1 presents the SD and NR obtained for different
SPTV AD values and averaged for the whole HSM test.

2.3. Subjective Experiments (jndSPT)

The goal is to subjectively characterize for each individual the trade-
off between SD and NR for different SPTV AD values. For this
we measured the just noticeable (jnd) distortion depending on the
SPTV AD . We used a 3-Alternative Forced Choice (3-AFC) proce-
dure with adaptive control of the SPTV AD parameter. Three alter-
native choices were presented randomly, where two of them are the
clean reference speech signal while the other is one of the test signals
processed with a given SPT. The subject selects which of the sounds
is different. The initial value was set to a SPTV AD of 0.85. We used
a 1up- 2down- method to obtain unbiased results. The subject had
to answer two times correctly to reproduce a less distorted signal. If
the subject answers wrong the algorithm goes 1 step behind, where
the distortion is more perceptible. A maximum of 12 reversals was
established.

3. RESULTS

A subjective test was performed using 5 post-locutive adult CI users.
The mean age was 55 years. All of them were excellent performers
(i.e. having more than 50% speech intelligibility at 10dB SNR).
If the CI users had a bilateral implant we only tested the best ear.
Signals were pre-processed in a PC and delivered to the CI speech
processor through a direct-in audio cable.

3.1. Experiment 1 jndSPT

Figure 3 presents the results for the jndSPT experiment. The results
show that 3 out of 5 subjects could perceive the distortion caused by
the BF (SPTV AD < 1). We also performed some tests with normal
hearing listeners resulting in jndSPT of around 0.5.

#1 #2 #3 #4 #5 mean
0
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0.2
0.3
0.4
0.5
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0.7
0.8
0.9
1
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dS

P
T
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3AFC procedure−jndSPT

NH

Perf.

Fig. 3. Results of the jndSPT subjective experiment.

3.2. Experiment 2 Sound Quality

The quality of the sound delivered by the BF was assessed using two
MUlti Stimulus with Hidden Reference and Anchor test (MUSHRA)
[20] experiments. The first one, termed MUSHRASD , assessed
the quality of the speech distorted signal s̃(t). The second one,
termed MUSHRASD−NR assessed the quality of the signal ỹ(t).

3.2.1. MUSHRASD description

The MUSHRA experiment was designed to evaluate the signal s̃(t)
processed with values SPTV AD 0.4, 0.55, jndSPT and 1. An an-
chor signal and the original clean and unprocessed signal were added
to the experiment. The anchor signal is a low pass filtered signal of
the most distorted signal (SPTV AD =1). The experiment consists
of rating the quality perception between 0 bad and 100 excellent
for all presented signals. Figure 4 presents the results. The original
clean speech signal obtained the highest scores. As expected, the sig-
nal processed with SPTV AD =0.4 obtained the same ratings as the
original signal because this VAD configuration does not produce no-
ticeable speech leakage distortion. Unexpectedly, the jndSPT was
rated lower than the original speech signal. We think that the flex-
ibility of the MUSHRA test, where the signals can be reproduced
several times, makes this test more sensitive to perceive the differ-
ences in perceptual distortion than the jndSPT . As expected, the
anchor signal obtained the lowest ratings and the signals processed
with a SPTV AD =1.0 obtained lower ratings than the signals pro-
cessed with lower SPTV AD values.
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Fig. 4. Results of the MUSHRASD test averaged for all CI users.

3.2.2. MUSHRASD−NR description

The ỹ(t) signal was processed using the same SPTV AD as in previ-
ous experiment. The original clean speech signal, the original noisy
signal and the anchor signal were also added to the experiment. Here
the subjects had to take into account both, the amount of noise re-
duction provided by the BF and the distortion produced by speech
leakage. The results are presented in Figure 5. It can be observed
that the differences between different SPT conditions are small. In
some cases the distortions (produced by leakage) might be masked
by the noise.
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Fig. 5. Results of the MUSHRASD−NR test averaged for all CI
users.

3.3. Experiment 3 Speech Intelligibility

Speech intelligibility was measured by means of the HSM sentence
test [21]. Two lists for each SPTV AD condition were presented.
The test was performed using the same simulated environment as
in the previous experiments. Figure 6 presents the speech intelligi-
bility scores. The results show that subjects obtained an improve-
ment of 50% in speech intelligibility using a BF with high noise
reduction (SPTV AD = 1) with respect to not using a BF or using a
BF with almost no noticeable speech leakage distortion (SPTV AD

= 0.4). The jndSPT BF obtained the best performance, obtaining
a good compromise between distortion and noise reduction. The
jndSPT was individually adjusted to each CI user using the results
presented in Figure 3. In terms of speech intelligibility it hence

seems more important for CI users to reduce the background noise
than to limit the distortion produced by the BF. However, subjects
who were more sensitive to perceive the speech distortion (lower
jndSPT ) decreased their speech intelligibility performance when
using SPTV AD larger than their jndSPT .
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Fig. 6. HSM Speech Intelligibility scores.

4. CONCLUSIONS

The main goal of this paper was to investigate if a state-of-the-art
beamformer (TF-GSC) produces perceived distortion in CI users and
to find out if this distortion affects sound quality and speech intelli-
gibility. With the 3AFC procedure we observed that some CI users
perceive the distortion with different sensitivity than others. Further-
more, some subjects do not perceive the distortion produced by the
BF. Second, we used a MUSHRA test to assess the quality of dif-
ferent BFs. We observed that MUSHRA is more sensitive to assess
the distortion than 3AFC. However, the MUSHRA experiment pre-
senting both the target signal and the background noise signal does
not show different user preferences of BF configuration in terms of
quality. Third, a speech intelligibility tests shows that speech leak-
age reduces speech intelligibility. For 4 out of 5 CI subjects the BF
that produces just noticeable distortion (jndSPT ) is the one produc-
ing best speech intelligibility scores.
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