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ABSTRACT

In this paper, we propose a beamforming algorithm for binaural
hearing aids with enhanced noise suppression capability. The en-
hancement is based on incorporatinga priori spatial information into
the conventional multichannel Wiener filtering (MWF) approach for
noise suppression. We develop a low complexity algorithm for the
resulting quadratically constrained beamforming problem. Through
numerical experiments, we demonstrate that the new algorithm
can achieve better noise suppression performance than the exist-
ing beamforming algorithms under fairly realistic conditions. In
addition, we propose two techniques to further reduce the algo-
rithm’s computational complexity and the communication overhead
between two hearing aids without sacrificing the noise suppression
performance.

Index Terms— Binaural signal processing, dual decomposition,
coordinate descent, spatial information

1. INTRODUCTION

Multichannel Wiener filtering (MWF) algorithm has been extensive-
ly studied for noise suppression in hearing aid design. The objective
of MWF is to perform the minimum-mean-square-error (MMSE) es-
timation of a reference signal. The basic MWF design has beenex-
tended to situations involving binaural hearing aids by exploiting the
extra degrees of freedom brought by the multiple microphones at
both hearing aids (see [1] and references therein). While these algo-
rithms can significantly improve the noise reduction performance of
the binaural hearing aids, they inevitably cause undesirable speech
distortions [2].

To mitigate speech distortions, speech distortion weighted MWF
(SDW-MWF) has been proposed to balance these two design goals
with a predetermined trade-off parameter [3]. Alternatively, it has
been suggested to explicitly enforce speech distortion requirements
usinga priori acoustic transfer functions (ATFs). ATFs are used in
the well-known Minimum Variance Distortionless Response (MV-
DR) [4] and Linearly Constrained Minimum Variance (LCMV) [5]
filter designs which both require zero speech distortion. These fil-
ter designs have been used extensively in hearing aid design[6,
7]. However, the requirement of zero speech distortion reduces the
amount of noise suppression dramatically. Therefore, it issometimes
preferred to allow a certain limited amount of speech distortion as
for example proposed by the parameterized multichannel non-causal
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Wiener filter (PMWF) design [8]. Unfortunately, it’s difficult to sel-
ect a parameter to achieve the desired trade off between the two de-
sign factors in the SDW-MWF design, especially in the presence of
multiple speech sources. Moreover, the optimal MMSE filter for
these binaural MWF designs requires the signal correlationmatrix
to be accurately estimated, which is unrealistic in practice.

In this work, we revisit the binaural MWF hearing aid design
problem. We incorporate thea priori knowledge of approximate
ATFs for the signal sources into the design to improve the hearing
aid performance. We formulate the design as a quadraticallycon-
strained quadratic program (QCQP) [9], explicitly striking a desir-
able balance between the two design factors. Since the constraints
of the formulated QCQP do not depend on the correlation matrix of
the signals, the resulting formulation is more robust to thespeech
nonstationarity. Moreover, we propose an iterative dual decomposi-
tion approach [10] to solve the proposed formulation. We also show
how to significantly reduce the algorithm’s computational complex-
ity and the communication overhead between the hearing aids.

Notations: Boldfaced lowercase (resp. uppercase) letters are
used to represent vectors (resp. matrices). The superscripts ‘H ’
stands for the conjugate transpose. The set of alln-dimensional
complex vectors are denoted byCn. We denotexi ∈ C as theith
element ofx ∈ C

n, andx−i , [xH
1 , . . . ,xH

i−1,x
H
i+1, . . . ,x

H
n ]H .

2. SYSTEM MODEL AND PROPOSED BINAURAL
HEARING AID DESIGN

We consider a binaural hearing aid, which consists of twoM -
microphone arrays, one on each hearing aid. The signals are
processed in the frequency-domain by transforming the received
signals via short time fourier transform (STFT). The received sig-
nal for theith time frame and on frequency bandω is denoted as
y(i, ω) ∈ C

2M , expressed below

y(i, ω) = x(i, ω) + v(i, ω) ∈ C
2M . (1)

Here x(i, ω) = [(x(i, ω)L)H , (x(i, ω)R)H ]H and v(i, ω) =
[(v(i, ω)L)H , (v(i, ω)R)H ]H are, respectively, the speech com-
ponent and the interference component;L (resp.R) labels the signal
belonging to the left (resp. right) hearing aid. For notational sim-
plicity, in the following, we will omit the time and frequency indices
i andω; the labelsL andR will be used only when necessary.

In this paper, we will focus on the scenario with one desired
target sources, multiple directional interference sourcesnφ,φ ∈ Φ,
and one possibly non-directional interferencen. We would like to
note that it is possible to use the proposed method with more than
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Fig. 1. The schematic of the considered system environment.

one target. The speech componentx and the interference component
v can be expressed as

x = hs, v =
∑

φ∈Φ

hφnφ + n, (2)

whereh andhφ are the corresponding ATFs fors andnφ, respec-
tively. These notations are summarized in Fig. 1.

The hearing aids apply a receive beamformerw to linearly com-
bine the received signaly, i.e., the processed signalz ∈ C can be
represented as

z = w
H
y = w

H
x

︸ ︷︷ ︸

desired speech

+ w
H
v

︸ ︷︷ ︸

interferences

. (3)

The proposed binaural beamforming design tries to exploit thea pri-
ori knowledge of (approximate) ATFs and balances the following
three design factors:

a) Reduce interference energy: The first requirement is that the
variance of the interferences should be minimum, i.e., the fil-
ter should seek to solve

min
w

Ev[|w
H
v|2] ≡ min

w

w
H
Rvw, (4)

whereRv , E[vvH ] is the correlation matrix for both the
directional and non-directional interference components.

b) Prevent speech distortion (SD) fors: the idea is to use the
(approximate) ATFs to improve the SD performance. To this
end, assume that a set of approximate ATFs forh, denoted
as{hθ ∈ C

2M | θ ∈ Θ}, is available. The following SD
constraints are therefore enforced:

|wH
hθ − hθ,ref |

2 ≤ ǫθ|hθ,ref |
2, ∀ θ ∈ Θ, (5)

wherehθ,ref ∈ C is the ATF of the reference microphone for
hθ, andǫθ is the prespecified tolerable SD. Note that the set of
ATFs may be obtained by direct measurement in an anechoic
room with for different known directions of arrival (DOA).

c) Interference suppression: The last design criterion ensures
that the strength amplification of theφ-th interference should
not exceed the specified thresholdǫφ

|wH
hφ|

2 ≤ ǫφ, ∀ φ ∈ Φ. (6)

In summary, the optimization-based hearing aid design consid-
ered in this paper can be formulated as follows:

w
⋆ = argmin

w

w
H
Rvw

subject to (5) and (6).
(7)

Remark 1 When constraint(6) is ignored, i.e., no constraints are
put on the directional sources, and|Θ| = 1, problem(7) reduces to
the PMWF hearing aid design. Furthermore, ifǫθ = 0, problem(7)
becomes the classical MVDR hearing aid design.

Problem (7) is a QCQP problem, which can be solved using
general purpose interior point solver [11]. However the associated
computational complexity is too large for implementation in hearing
aids. In the following section, we introduce an iterative algorithm
for solving (7) whereby each update step is low-complexity and in
closed-form. This algorithm can be further simplified by reducing
the communication overhead between hearing aids and the compu-
tation complexity.

3. PROPOSED EFFICIENT DUAL DECOMPOSITION
APPROACH ALGORITHM

In this section, the dual decomposition technique from convex opti-
mization theory will be exploited to solve our design problem. First,
we write the Lagrangian function for problem (7) as follows:

L(w, δ) = w
H
Rvw +

∑

φ∈Φ

δφ(|w
H
hφ|

2 − ǫφ)

+
∑

θ∈Θ

δθ(|w
H
hθ − hθ,ref |

2 − ǫθ |hθ,ref |
2) (8)

whereδθ ≥ 0 andδφ ≥ 0 are, respectively, the Lagrangian dual
variables for theθ-th andφ-th constraint of (5) and (6);δ is defined
asδ, {δθ , δφ| θ ∈ Θ, φ ∈ Φ}.

Fixing the dual variablesδ and minimizingL(w, δ) overw, we
obtain the following unconstrained optimization problem

min
w

L(w, δ), (9)

whose optimal solutionw can be obtained in closed-form as follows

w =



Rv +
∑

φ∈Φ

δφhφh
H
φ +

∑

θ∈Θ

δθhθh
H
θ





−1
∑

θ∈Θ

δθhθh
H
θ,ref .

(10)

Intuitively, the collection of dual variablesδ serve as the penalty
coefficients of the violation for both the constraints. Ifδθ increases,
the resulting constraint violation for (5), i.e.,(|wH

hθ − hθ,ref |
2 −

ǫθ|hθ,ref |
2), decreases. The same argument applies to the resulting

constraint violation of (6) forδφ as well. The following proposition
follows from the standard convex optimization theory.
Proposition 1 [12, Prop. 5.3.1]If problem(7) is feasible, there ex-
ists an optimalδ⋆ such thatw⋆ = argminw L(w, δ⋆) is the op-
timal receive beamformer for hearing aid design(7). Moreover,
δ⋆ = argmaxδ ≥ 0

L(w⋆, δ).

In the following, we describe an iterative gradient ascent algo-
rithm for computing the optimalδ⋆. In particular, lett denote the it-
eration index, then the gradient directions forminw L(w, δ(t)) with
respect toδ(t)θ andδ(t)φ are, respectively, given by [9]

g
(t)
θ = |w(t)H

hθ − hθ,ref |
2 − ǫθ |hθ,ref |

2, (11a)

g
(t)
φ = |w(t)H

hφ|
2 − ǫφ, (11b)

wherew(t) = argminw L(w, δ(t)). Therefore, the dual variables
δ can be updated towards its ascent direction:

δ
(t+1)
θ =

[

δ
(t)
θ + α(t)g

(t)
θ

]+

, δ
(t+1)
φ =

[

δ
(t)
φ + α(t)g

(t)
φ

]+

, (12)

where[x]+ , max{0, x} andα(t) > 0 is the stepsize for updating
the dual variablesδ. The dual update procedure (12) also follows the
intuition behind the Lagrangian formulation (8). Since thegradient
directiong(t)θ andg(t)φ are the constraint violations for the current
iteration, (12) increases the dual variables when the constraint viola-
tion is larger than zero, and decreases otherwise. Table 1 summarizes
the proposed algorithm for hearing aid design (7). The convergence
property of the algorithm is summarized in the result below.
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Algorithm 1: Dual decomposition approach for (7):
1: Initialize δ(0) ≥ 0 ; sett = 0
2: Repeat
3: Update beamformerw(t) = argminw L(w, δ(t)) by (10)
4: Update dual variablesδ(t+1) by (12)
5: t = t+ 1
6: Until Desired stopping criteria is met

Table 1. Summary of the proposed dual decomposition algorithm.

Proposition 2 [12, Chapter 2.3] Assume problem(7) is feasible and
the step sizeα(t) satisfiesα(t) = c/t > 0 wherec is a constant.
Thenw(t) → w⋆ ast → ∞.

We note that later in our numerical experiments, we will focus
on a simplified step size rule, i.e., we setα(t) = c, ∀ t for some
constantc > 0. Since there is no explicit expressionc, we have to
pick it heuristically. Nevertheless the overall algorithmstill achieves
promising performance with small number of iterations.
Remark 2 As a special case, consider|Φ| = 0 and |Θ| = 1 with
hθ = h. The update procedure(10) reduces to SDW-MWF with pa-
rameterµ = Ps/δθ wherePs = E[|s|2]. Algorithm 1 can be viewed
as an extension of SDW-MWF that iteratively updates the parameter.
Moreover, Algorithm 1 achieves a desired perceptual performance in
SD with the constraints(5) being explicitly satisfied.

In the following subsections, we discuss modifications of Al-
gorithm 1 to adapt to certain practical hardware constraints of the
hearing aids.

3.1. Communication Overhead Reduction
The first practical constraint is the limited communicationcapabil-
ity between two hearing aids. To address this issue, we first make
the following practical assumptions: i) both hearing aids have full
knowledge of ATFs in (7). ii) the left hearing aid contains the ref-
erence microphone; it computesw and forward the resultingwR to
the other side.

Based on these assumptions, the following three quantitiesneed
to be communicated between two sides in each frame: i) the com-
puted beamformerwR from left to right; ii) the processed signal
zL andzR, exchanged between two sides; iii) the quantities needed
to form the covarianceRv, transmitted from right to left. Among
these, the beamformer communication will be ignored since it hap-
pens less frequently. The processed signal exchange accounts for 2
data streams per frame. To computeRv , the right hearing aid should
transmityR each noise-only frame to the left, which accounts for
M data streams. In total, there are2 + M data streams being ex-
changed during each noise-only frame, and2 data streams during
each speech-plus-noise frame.

On the other hand, the constraints (5) and (6), respectively, guar-
antee low SD fors and certain degree of interference suppression.
It is therefore reasonable to obtain satisfactory beamformer design
from (7) with only a rough estimate ofRv. To obtain such estimate,
we first approximateRv to be a block diagonal matrix, i.e.,

Rv =

[
R

LL
v R

LR
v

(RLR
v )H R

RR
v

]

≈

[
R

LL
v 0
0 R

RR
v

]

, (13)

whereRLL
v = E[vL(vL)H ], RRR

v = E[vR(vL)R], andRLR
v =

E[vL(vR)H ]. HereRLL
v andRRR

v can be estimated locally at each
hearing aid without exchanging the received signals, i.e.,yR, during
each noise-only frame. Instead, the right hearing aid can update the
currentRRR

v to the left hearing aid less frequently, say everyW
noise-only frames. Hence, the communication overhead is decreased
from 2 +M to 2 +M(M + 1)/(2W ).

Algorithm 2: Coordinate descent procedure for(10):
1: Initialize w(t,T ) with T = 0
2: For T = 1 ∼ Tmax

3: w(t,T ) = w(t,T−1)

4: For i = 1 ∼ 2M
5: Updatew(t,T )

i by (14)

Table 2. Summary of the proposed coordinate descent procedure for
updatingw(t).

3.2. Low Complexity Implementation
The second issue we address is the limited computational capabili-
ty of each hearing aid. To this end, we will first analyze the com-
putational complexity order of Algorithm 1. For the beamformer
update (i.e., Step 3), the computational complexity isO((2M)3 +
(2M)2(|Θ| + |Φ| + 1)), while that for the dual update (i.e., Step
4) isO(2M(|Θ| + |Φ|)). Therefore, per dual decomposition itera-
tion, the total computational complexity is in the order of(2M)3 +
(2M)2(|Θ|+ |Φ|+ 1) + 2M(|Θ|+ |Φ|).

In the following, we propose a low complexity procedure based
on the so-called coordinate descent (CD) method [12, 13]. Specifi-
cally, the beamformer update will be approximated since it contains
the main computational overhead (in the order of(2M)3, incurred
by the matrix inversion in (10)). First, we observe that by fixing δ(t),
the objective functionL(w, δ(t)) is convex, continuous, and differ-
entiable with respect tow. Secondly, for eachi = 1 ∼ 2M , the
problemminwi

L(w, δ(t)) has an unique optimal solution shown
below:

wi = ([Rv]ii+
∑

θ∈Θ

δθ|hθ,i|
2+

∑

φ∈Φ

δφ|hφ,i|
2)−1

[
∑

θ∈Θ

δθhθ,ih
H
θ,ref

−



R
H
v,(−i)i +

∑

θ∈Θ

δθhθ,ih
H
θ,−i +

∑

φ∈Φ

δφhφ,ih
H
φ,−i



w−i



 ,

(14)

where [Rv ]ii is the ith diagonal element ofRv andRv,(−i)i ,

E[v−iv
H
i ]. With these properties, we propose to apply the coordi-

nate descent procedure that cyclically update each elementof w; see
Table 2 for detailed description of the algorithm. The optimality of
Algorithm 2 is shown via the following proposition:
Proposition 3 [13, Thm. 4.1] For the convex functionf(x) :
C

M → R, assume the following condition holds:f is continu-
ous and differentiable forx. Thenx obtained by the coordinate
descent procedure with cyclic update rule converges to the optimal
x
⋆ = argminx f(x).

As a result of Proposition 3, Algorithm 2 guarantees that
w(t,Tmax) → w(t) asTmax → ∞. Moreover, all terms in (14) ex-
ceptw−i can be precomputed and the corresponding computational
complexity isO((|Θ|+ |Φ|)(2M)2). On the other hand, for updat-
ing wi, the computational complexity isO(2M). Hence, the total
computational complexity becomesO((|Θ|+ |Φ|+Tmax)(2M)2).
In the numerical experiments in Sec. 4,Tmax is set to be 1. Al-
though this setting cannot guarantee the optimal convergence, we
will see that little performance loss is incurred. Most important-
ly, it results in a great computational complexity reduction for
beamformer update fromO((2M)3 + (2M)2(|Θ| + |Φ| + 1)) to
O((|Θ|+ |Φ| + 1)(2M)2).

4. NUMERICAL EXPERIMENTS
In this section, the performance of the proposed algorithmsis
demonstrated and compared with that of the binaural hearingaid
designs SDW-MWF (with the parameterµ = 1) and the MVDR
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Fig. 2. The performances of IW-SNRI and IW-SD for different hearingaid
designs with batch correlation matrix update.

that minimizes the output noise power, i.e.,wH
Rvw, with zero SD

constraint.
We assume the person wearing hearing aids is located in the cen-

ter of a 6m×6m×4m room. All the sources are1m away from the
hearing aids. The ATFs from sources to microphones are generat-
ed by the image method [14], and the head is modeled as a rigid
sphere [15]. The desired speech comes from the direction0◦ while 4
directional interference sources come respectively from70◦, 150◦,
210◦, and290◦, and no non-directional interference exists. The de-
sired target source is a 23s signal with six different sentences, a-
mong which 3 sentences are from male speakers and 3 sentencesare
from female speakers. All of the sources are sampled at 16kHz, and
they are taken from TIMIT database [16]. Additionally, there is a
0.5s silence period between each sentence. Each directional inter-
ference source consists of nonstop speech. Each hearing aidhas3
microphones (M = 3), and uses a 256-point FFT. The ATFs of ane-
choic room for the hearing aids are assumed to be known. In the
sequel, we letΘ = {η − 10◦, η − 5◦, η◦, η + 5◦, η + 10◦} and
Φ = {80◦, 158◦, 202◦, 280◦}. Hereη is the direction of ATF for
MVDR. The proposed algorithms are tested under reverberantsce-
nario withT60 = 200ms and the input SNR is -5dB. That means the
a priori knowledge of ATFs are inaccurate due to both source direc-
tion estimation error and reverberation. The noise-only frames are
used to estimate the correlation matrix of noiseRv. The correlation
matrix for the signalRx = Ry−Rv+ǫI can then be estimated from
the signal-plus-noise interval, andǫ ≥ 0 is chosen such thatRx is
positive semi-definite. The parameters of problem (7) is chosen as
ǫΘ = {(0.16, 0.09, 0.04, 0.09, 0.16)100.5} andǫφ = 9 × 10−3.5,
∀ φ ∈ Φ, where SNR is the input signal and noise ratio (SNR). Since
the coefficients of ATFs are small, The fixed step sizeα(t), ∀ t, of
Algorithm 1 is set to as large as5× 106.

In Fig. 2, the two performance metrics, intelligibility-weighted
SNR improvement (IW-SNRI) and intelligibility-weighted spectral
distortion (IW-SD) [17], for different hearing aid designsare com-
pared. For this set of experiments, batch correlation matrix estima-
tion for Rv andRx is used. We can easily observe that the pro-
posed hearing aid design outperforms the other benchmark designs
in terms of both metrics whenη is inaccurately estimated. The ad-
vantage over MVDR hearing aid design in IW-SNRI comes from
introducing tolerable amount of degradation in IW-SD, which can
be controlled by parameterǫΘ, and the extra approximated ATFs of
the desired speech. Furthermore, the optimal solution of design (7)
can be well approximated by running Algorithm 1 with only5 ∼ 10
iterations.

Because SDW-MWF is sensitive to the VAD errors [3], Fig. 3
investigates the performance of the algorithms as functionof miss
rate with a constant false alarm rate of30%. One can observe that
the proposed design is not as sensitive as SDW-MWF. On the other
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aid designs with batch correlation matrix update and a constant false alarm
rate of30%. Here types 1∼4, respectively represent (0◦, 10%), (0◦, 30%),
(10◦, 0%), and (10◦, 30%).

0 5 10
0

2

4

6

8

10

12

η (°)

IW
−

S
N

R
I

0 5 10
0

1

2

3

4

5

6

7

8

9

10

η (°)

IW
−

S
D

 

 

SDW−MWF (β=0.999)
MVDR (β=0.999)
Proposed design (W=32, β=0.85)
Proposed design (W=32, β=0.85, CD)

Fig. 4. The performances of IW-SNRI and IW-SD for different hearingaid
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hand, since MVDR also exploits the a priori spatial information, it
is not affected by this error as much as SDW-MWF ifη is appropri-
ately approximated, i.e., Type 1 and 2. Note that asη increases, i.e.,
increasingly inaccurate DOA estimation of the desired speech, for
MVDR, both performance metrics degrade dramatically.

In the third set of experiments, the correlation matrix estimation
for Rv andRx is iterative updated instead. Specifically,

Rv(i+ 1, ω) = βRv(i, ω) + (1− β)v(i, ω)v(i, ω)H , (15)

andRy(i, ω) is obtained similarly. One iteration of Algorithm 1 is
applied for every correlation matrix update. The two approximation
techniques, i.e., low communication overhead scheme withW = 36
(Sec. 3.1) and low complexity Algorithm 2 (Tmax = 1) for up-
dating beamformerw step in Algorithm 1, are also applied. This
setting suggests that the communication overhead for the proposed
approach is around 2.03 data streams per frame, which is reduced
from the original 2.54 data streams per frame. Moreover, forthe
existing SDW-MWF and MVDR, extra communication overhead is
needed for estimatingRy andRv . In Fig. 4, the performance of
IW-SNRI and IW-SD for all hearing aid designs is compared. The
relative performance of different algorithms is similar tothat of the
first experiment even with the fact that Algorithm 2 solves the hear-
ing aid design (7) inexactly.

5. CONCLUSIONS
In summary, this paper proposes an extension of the MWF algorithm
that exploits thea priori knowledge of spatial information. The algo-
rithm uses the dual decomposition method to achieve more noise re-
duction with low distortion while being computational efficient and
only requiring a low communication overhead. One future direction
is extending the proposed noise suppression hearing aid design such
that the binaural cue can also be preserved, e.g., [18].
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