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ABSTRACT

We study multi-microphone noise reduction systems consisting of a
beamformer and a single-channel (SC) noise reduction stage. In par-
ticular, we present and analyse a maximum likelihood (ML) method
for jointly estimating the target and noise power spectral densities
(psd’s) entering the SC filter. We show that the estimators are min-
imum variance and unbiased, and provide closed-form expressions
for their mean-square error (MSE). Furthermore, we show that the
MSE of the noise psd estimator is particularly simple: it is inde-
pendent of target signal characteristics, frequency, and microphone
locations. In a hearing aid context, we analyze the performance of
the estimators as a function of target angle-of-arrival andfrequency.
Finally, we demonstrate the advantage of the proposed method in a
hearing aid situation with a target speaker in large-crowd noise.

Index Terms— Power spectral density estimation, multi-
microphone speech enhancement, noise reduction for hearing aids.

1. INTRODUCTION

Acoustic communication devices, e.g., tele-conferencingsystems,
mobile phones, portable/wearable hearing devices, etc., must work
well in noisy environments. When power, space, and cost constraints
allow it, multi-microphone noise reduction systems are useful in this
situation, since they offer spatial filtering, in addition to the spectro-
temporal filtering allowed by single-microphone systems.

The Multi-channel Wiener Filter (MWF) and its recent exten-
sions is an efficient tool for multi-microphone speech enhancement,
e.g. [1, 2]. It is well-known that the MWF can be decomposed into
a concatenation of a Minimum Variance Distortion-less Response
(MVDR) beamformer and a single-channel Wiener filter (SWF) [3].
In practice, this decomposition is often prefered as it offers imple-
mentational advantages and easier control of spatial and spectro-
temporal processing artefacts. With this MVDR+SWF represen-
tation, the SWF relies on estimates of the psd’s of the targetand
noise signals, respectively, entering the SWF. These psd’smay be
estimated directly from the output signal of the beamformer[4] us-
ing single-channel noise psd tracking algorithms [5–8]. Other ap-
proaches use multiple microphone signals to first estimate the inter-
microphone noise covariance matrix based on various assumptions
wrt. the structure of this matrix, e.g. [9–12]. Afterwards,since the
beamformer is linear, it is easy to estimate the noise psd entering the
SWF, e.g., [13]. Both these classes of methods focus on the noise
psd; an estimate of the target speech psd is found subsequently using
the assumption that target and noise processes are independent.

In this paper, we present and analyze a multi-microphone max-
imum likelihood (ML) method forjointly estimating the target and
noise psd entering the SWF. The method is general and our theoret-
ical analysis, which we present in the first part of the paper,is valid

for any microphone array configuration. In the last half of the paper,
our focus is to understand the behavior of the method as a function
of target signal direction and frequency, when used for speech en-
hancement in a behind-the-ear (BTE) hearing aid (HA) application.

While expressions for the ML estimators themselves have al-
ready been derived for direction-of-arrival problems, e.g. [14, 15],
our analysis and application of them in a microphone array context
is new. The contributions of the paper can be summarized as fol-
lows. First, we provide an interpretation of the proposed MLap-
proach in terms of a recently introduced method for noise psdtrack-
ing [13] - this interpretation is important because a) it explains the
proposed ML approach in terms of simple filtering operations, and b)
the theoretical results presented in this paper are directly applicable
to [13] and other methods based on it, e.g., [16, 17]. Secondly, we
present and analyze closed-form expressions for the mean-square er-
ror (MSE) achievable with the proposed psd estimators. Finally, we
focus on the BTE-HA, where we provide a simulation study of the
MSE performance and demonstrate the advantage of the proposed
estimators in a multi-microphone speech enhancement system.

2. SIGNAL MODEL AND ASSUMPTIONS

Let the noisy observation at themth microphone be given by

ym(n) = xm(n) + vm(n), m = 1, . . . ,M,

whereym(n), xm(n), andvm(n) denote the noisy, clean target, and
noise signal, respectively,M > 1 is the number of microphones, and
n is a discrete-time index. We assume that the signals are realizations
of zero-mean Gaussian random processes, and that noise and target
processes are uncorrelated. A short-time Fourier transform (STFT)
applied to each microphone signal leads to STFT coefficients

Ym(l, k) =

N−1
∑

n=0

ym(n+ lDA)wA(n)e
−

2πjkn
N ,

wherel andk are frame and frequency bin indices, respectively,N is
the frame length,DA is the decimation factor,wA(n) is the analysis
window function, andj =

√−1. Similar expressions hold for target
STFT coefficientsXm(l, k) and noise STFT coefficientsVm(l, k).

We assume thatYm(l, k) are approximately independent across
time l and frequencyk1 , which allows us to treat STFT coefficients
with different frequency indexk independently, and suppress index
k in the notation. For a given frame indexl, we can collect the noisy
STFT coefficients for each microphone in a vector,

Y (l) , [Y1(l) . . . YM (l)]T .

1This is a standard assumption in speech processing, which isvalid when
the correlation time of the signal is short compared to the frame lengthN ,
and successive frames are spaced sufficiently far apart [5, 18].

5728978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



Analogous expressions hold forX(l) andY (l), so that

Y (l) = X(l) + V (l).

Let d′(l) = [d′1(l) · · · d′M (l)]T denote the acoustic trans-
fer function from target source to each microphone, letd(l) =
[d′1(l)/d

′

i(l) · · · d′M (l)/d′i(l)]
T be the relative acoustic transfer

function wrt. the ith (reference) microphone [19], and let̄X(l)
be the target STFT coefficient at this microphone. Then,

X(l) = X̄(l)d(l).

Finally, the noise covariance matrixCV (l) = E(V (l)V H(l)),
which is assumed invertible, can evolve across signal regions with
speech activity according to the model introduced in [13],

CV (l) = λV (l)CV (l0), l > l0,

where l0 denotes the most recent frame index where speech was
absent. For convenience, we scaleCV (l0) such that element(i, i)
equals one, because thenλV (l) is the time-varying psd of the noise
process, measured at the reference microphone. Thus, during speech
presence, the noise process does not need to be stationary, but the co-
variance structure is assumed fixed up to a scalar multiplication.

Hence, the covariance matrix of the noisy observation during
speech activity can be summarized as

CY (l) = λX(l)d(l)dH(l) + λV (l)CV (l0), l > l0, (1)

whered(l) is assumed known andCV (l0) can be estimated in speech
absence signal regions, but the time-varying speech and noise psds,
λX(l) andλV (l), are unknown and must be estimated.

3. ML ESTIMATION OF TARGET AND NOISE PSDS

We consider ML estimation ofλX(l) andλV (l) during signal re-
gions with speech activity. From the assumptions above it follows
that vectorY (l) obeys a zero-mean (complex, circular symmetric)
Gaussian probability density function (pdf), i.e.,

fY(l) (Y (l);λX(l), λV (l)) = N (0, CY (l)) .

LetY D(l) = [Y (l−D+1) · · ·Y (l)] denote a sequence ofD succes-
sive observations. Then, since observationsYm(l) are assumed in-
dependent across timel, the pdf ofY D(l) = [Y (l−D+1) · · ·Y (l)]
is given by

fY D(l)(Y D(l);λX , λV ) =

l
∏

j=l−D+1

fY(j) (Y (j); λX , λV ), (2)

under the short-time stationarity assumptionλV , λV (j), λX ,

λX(j), andd = d(j), j = l−D+1, . . . , l. ML estimatesλX,ML(l)
andλV,ML(l) of λX(l) andλV (l) can be found via partial deriva-
tives of Eq. (2) with respect toλX(l) andλV (l). As shown in [14],
the ML estimate ofλV (l) is given by

λV,ML(l) =
1

M − 1
tr
(

Qu(l)ĈY (l)C−1
V (l0)

)

, (3)

where

ĈY (l) =
1

D

l
∑

j=l−D+1

Y (j)Y (j)H ,

is the sample covariance matrix of the noisy signal, and

Qu(l) = I − d(l)(dH(l)C−1
V (l0)d(l))

−1dH(l)C−1
V (l0).

Analysis
Filter
Bank

Beam
former

Filter
Channel
Single− Synthesis

Filter
Bank

... ...

Matrix
Blocking ...

ML estimate

ML estimate

Estimate psd’s

...
...

Estimation
Joint ML

MVDR
Beamformer

ym(n)
x̂(n)

B(l)

wMV DR(l)

λML,X(l)

λML,V (l)

λML,V (l)

λML,X(l)

λML,V (l)

φ̂X (l) φ̂V (l)

Eq. (4)

Eq. (6)

Eqs. (8), (9)

Fig. 1. The proposed ML estimation framework used in a
beamformer-directed single-channel noise reduction system.

Furthermore, re-writing the results of [14] slightly, we find

λX,ML(l) = wH
MV DR(l)

(

ĈY (l)− λV,ML(l)CV (l0)
)

×
wMV DR(l),

(4)

where
wMV DR(l) =

C−1
V (l0)d(l)

dH(l)C−1
V (l0)d(l)

(5)

is the weight vector of an MVDR beamformer, e.g., [3].

3.1. Interpretation

The ML estimators in Eqs. (3) and (4) have interesting interpreta-
tions. It can be shown that (3) is identical to the ML estimator pro-
posed in [13], where it was interpreted in terms of a blockingmatrix
B(l); this interpretation may therefore be re-used here. Specifically,
letB(l) ∈ CM×M−1 denote a blocking matrix whose columns form
a basis for theM − 1 dimensional vector space orthogonal tod(l),
so thatdH(l)B(l) = 0. Then it may be verified that Eq. (3) can be
re-written as the following expression derived in [13],

λV,ML(l) =
1

M − 1
tr
( 1

D
Y H

D(l)B(l)×

(BH(l)CV (l0)B(l))−1BH(l)Y D(l)
)

.

(6)

Eq. (6) may be interpreted as the average variance of the observable
noisy vectorY (l), passed throughM − 1 linearly independent tar-
get cancelling beamformers, and normalized according to the noise
covariance between the outputs of each beamformer.

Furthermore, the ML estimateλX,ML(l), Eq. (4), is simply the
variance of the noisy observationY (l) minus the estimated noise
variance, at the output of an MVDR beamformer. Fig. 1 uses this in-
terpretation in a noise reduction system consisting of a beamformer,
followed by an SC filter. Here, beamformerswMV DR(l) andB(l)
facilitate estimation ofλX(l) andλV (l), which are used to inform
the SC filter about the target and noise psds in its input signal.

4. ANALYSIS OF ESTIMATORS

4.1. Minimum Variance Unbiased (MVU) Estimators

It can be shown that the ML estimators,λS,ML(l) andλV,ML(l),
areminimum variance unbiased(MVU) estimators (we have omitted
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the proof due to space limitations: the unbiasedness property follows
easily by computingE(λV,ML(l)) andE(λX,ML(l)), respectively,
while the minimum variance property follows from application of
[20, Thm. 3.2]. In other words, no unbiased estimators exist, which
achieve an MSE lower than that ofλV,ML(l) andλX,ML(l).

4.2. Cramér-Rao Lower Bounds (CRLBs)

The CRLB is a lower bound on the estimation MSE for unbiased
estimators. Generally, ML estimators approach the CRLBasymptot-
ically in the number of observationsD. But when the estimators are
MVU, as the proposed ones, they attain the bound not only asymp-
totically, but foranydata record lengthD. This property is important
for speech processing, because, due to non-stationarity ofthe speech
or noise signal,D must often be small.

We now derive expressions for the CRLB. To do so, letθ =
[λX(l) λV (l)]T , θML = [λML,X (l) λML,V (l)]T , and letI(θ)
denote the Fisher information matrix (FIM) with elements

[I(θ)]ij = −E

[

∂2 log fY D(l)(Y D(l); θ)

∂θiθj

]

. (7)

Then, because our estimators are MVU, the estimation MSE of the
ith element inθ satisfies [20]

E[(θML,i − θi)
2] = [I(θ)−1]ii,

i.e., the MSE is given by the diagonal elements of the inverseFIM.
Evaluating the partial derivaties in Eq. (7), it may be shownthat [21]

[I(θ)]ij = Dtr

[

C−1
Y (l; θ)

∂CY (l; θ)

∂θi
C−1

Y (l; θ)
∂CY (l; θ)

∂θj

]

,

where CY (l; θ) is given by Eq. (1) and we emphasized its de-
pendence onθ = [λX(l) λV (l)]T . Computing the derivatives
CY (l; θ)/∂θi, and applying the matrix-inversion lemma to find ex-
pressions forC−1

Y (l; θ) allows us, after some simplifications, to find
expressions for[I(θ)−1]ii.

To report the results compactly, assume that an MVDR beam-
former is used in the top brach of Fig. 1. LetφX(l) andφV (l) de-
note the psd of the target and noise components, respectively, at the
output of this MVDR filter,

φX(l) = λX(l), (8)

and

φV (l) =
λV (l)

dHC−1
V (l0)d

. (9)

Then, the signal-to-noise ratio (SNR)ξ(l) at the output of the MVDR
filter is given by

ξ(l) =
φX(l)

φV (l)
=

λX(l)

λV (l)
dHC−1

V (l0)d. (10)

Rather than the absolute CRLB, it is more informative to re-
port the CRLB relative to the squared quantity of interest, i.e.,
N-CRLBλX

= E[(λX,ML − λX)2]/λ2
X and N-CRLBλV

=
E[(λV,ML − λV )2]/λ2

V , respectively. From Eqs. (7)-(10) we find
that

N-CRLBλX
=

1

D

(

1 + ξ(l)

ξ(l)

)2

+
1

D

1

M − 1

1

ξ2(l)
, (11)

N-CRLBλV
=

1

D

1

M − 1
. (12)

From these expressions, the following observations can be made.

1. N-CRLBλX
and N-CRLBλV

are monotonically decreasing
in the number of microphonesM and observationsD.

2. N-CRLBλX
is monotonically decreasing in the reference mi-

crophone SNR,λX(l)/λV (l), and the MVDR output SNR
ξ(l), Eq. (10).

3. Remarkably, N-CRLBλV
is independent of target signal char-

acteristics (power and direction). This may be understood
from the fact that the ML estimate ofλV (l) is based on a
target-cancelling beamformer (Sec. 3.1), the output of which
is unrelated to the target signal. Furthermore, N-CRLBλV

is
independent of frequency. Finally, N-CRLBλV

is indepen-
dent of the noise covariance matrixCV (l): this implies that
N-CRLBλV

is unaffected by changes in the spatial noise dis-
tribution as well as the microphone array geometry. A con-
crete consequence in the HA application example below is
that N-CRLBλV

is the same whether the HA microphone ar-
ray is located behind the ear of a HA user, or it is located in
free-field conditions.

4. N-CRLBλV
= 1/D for M = 2. It can be shown that this is

identical to the N-CRLB ifλV (l) were estimated in a cheat-
ing experiment, where the noise component in the noisy input
to the SC filter could be observed in isolation.

5. Finally, it can be verified thatλX(l) is ”harder” to estimate
thanλV (l), because N-CRLBλX

≥ N-CRLBλV
.

5. NOISE REDUCTION FOR HEARING AIDS

In this section we study the characteristics of the proposedestimators
in a hearing aid (HA) setup, and we demonstrate their use in the
beamformer-directed noise reduction system in Fig. 1.

5.1. Acoustic setup and HA configuration

We consider target speech signals impinging on anM = 2 BTE-
HA microphone array, worn by a HA user. To do so, we mount
the BTE-HA behind the left pinna (≈90 degs.) of a head-and-torso-
simulator (HATS) (B&K 4128 [22]) in an anechoic chamber and
measure impulse responses from 72 possible sound source positions
to each microphone. The possible sound source positions arespaced
uniformly in a circle with radius 1.5m centered at the HATS.

Microphone signals are generated by convolving the target sig-
nal with the relevant impulse responses. The microphone signals
are sampled at a frequency of 20 kHz, and passed through an STFT
based analysis filterbank using a frame lengthN = 128, a decima-
tion factorDA = 64, and wherewA(n) is a square-root Hanning
window. For each frequency channel, time-invariant vectors d(l) =
d are determined from white noise sequences played back from the
target position in question and captured by the microphones.

5.2. CRLBs for BTE Hearing Aid

To demonstrate experimentally the CRLBs derived in the previous
section for the HA situation, we assume that the HA user is exposed
to additive, cylindrically isotropic noise. Noise covariance matrices
CV (l0) for such a noise scenario are estimated from long-duration
white noise sequences simultaneously played back from the 72 po-
sitions. Finally, constant values ofλX(l) andλV (l) are chosen to
produce an SNR, SNRref = λX(l)/λV (l), of 0 dB at the reference
microphone. In Fig. 2 we evaluate N-CRLBλX

as a function of tar-
get angle and frequency; as expected from Eq. (12), N-CRLBλV

is
constant (not shown). N-CRLBλX

is a complicated function of angle
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and frequency. For targets from the sides (≈90 and≈270 degs.) es-
timation accuracy is 4-5 dBs worse than targets from the front/back
directions. This can be explained by recalling thatλML,X(l) is
based on the noisy signal passed through an MVDR beamformer
(Sec. 3.1), which is more efficient for targets located parallel rather
than perpendicular to the microphone axis (≈90 and≈270 degs.).

5.3. Performance Analysis: Noise Reduction in Hearing Aids

Finally, we demonstrate the practical use of the studied ML estima-
tion scheme in a multi-channel enhancement system based on the
M = 2 BTE-HA described above. The acoustic scene consists of
a single target speaker at a variable location in large-crowd noise,
generated by convolving different speech signals with eachof the
72 pairs of impulse responses and summing the contributions. The
noise signals are scaled to realize an SNR of 5 dB at the reference mi-
crophone, when the target source originates from the front (0 degs.).
Noisy signals are enhanced in the system depicted in Fig. 1, using

an MVDR and SWF system. The matrix̂CY (l) is found via ex-
ponential smoothing with a time constant of 50 ms (corresponding
to D ≈ 15 in the current implementation). Frame indicesl0 are
found by thresholding thea posterioriSNR,ζ(l) = |Y1(l)|2/λ̂V (l),
where λ̂V (l) is the noise psd at the reference microphone, deter-
mined by a version of the Minimum Statistics (MS) noise tracker [5]
(adapted to the frame length and sample rate used here). Psd esti-
matesφ̂X(l) andφ̂V (l) - found fromλML,X(l) andλML,V (l) via
Eqs. (8), (9) - are temporally smoothed using the decision-directed
approach to producea priori SNR estimatesξdd(l) [23]. The SWF
filter, gSWF (l) = ξdd(l)/(ξdd(l) + 1), is then applied to the out-
put signal of the MVDR beamformer, to produce an enhanced STFT
spectrum. Finally, an enhanced time-domain signalx̂(n) is con-
structed via an overlap-add procedure [24] using a square-root Han-
ning synthesis window.

For comparison, we enhance noisy signals in a similar system,
but whereCV (l), and subsequentlyφV (l), are estimated as in [4]. In
[4], CV (l) was estimated in noise-only regions, as determined using
the MS noise tracker [5], and fixed in speech presence regions. We
also enhance noisy signals using an adaptive MVDR beamformer
(Eq. (5)), and a stand-alone SWF, both using noise statistics updated
in noise-only regions as determined in [4].

Fig. 3 shows enhancement performance in terms of Segmental
SNR (Seg-SNR) [25] as a function of target angle. As expected, Seg-
SNR for the noisy signal is maximal for a target direction of≈90
degrees, i.e., at the left ear where the BTE-HA is mounted. A stand-
alone SWF improves Seg-SNR for all target directions. Generally
the proposed system performs better than the method in [4], which
in turn is better thanMVDR; we confirmed this order for other distor-
tion measures such as Log-Spectral Distortion [24], and STOI [26]
(not shown). Interestingly, the multi-channel methods arebetter for
target directions in the range 20-50 degs., and not at≈90 degs.,
where the input Seg-SNR is largest. This optimum angle rangecan
be understood as a tradeoff between the frontal direction (0degs.),
where the beamformer is most efficient (and the estimation errors in
λML,X(l) are smallest with the proposed system, Fig. 2) and 90
degs., where the input SNR is largest. Note also that performance is
even better when the target arrives from the rear (180 degs.). This
may be explained by the observation that SNR at the rear micro-
phone, which is located behind the pinna, is higher when the target
arrives from the rear than from the front. Finally, performance is rel-
atively lower for target angles around 250-330 degrees, because the
SNR at the microphones is reduced due to head shadow effects.

6. CONCLUSION

We presented and analyzed a maximum likelihood (ML) method for
estimating the power spectral densitities (psd’s) of the target and
noise signals entering the single-channel (SC) filter in a beamformer-
and-SC noise reduction system. We interpret the expressions for the
ML estimates in terms of simple filtering operations. Furthermore,
we show that the ML estimators are minimum variance, unbiased
estimators, and present closed-form expressions for theirachievable
mean-square error (MSE). In a two-microphone hearing aid context,
the MSE for the target psd is complicated and varies by at least 4-
5 dB as a function of target direction. The MSE for the noise psd,
however, is simple: it is independent of target signal content and
direction-of-arrival, frequency, and of microphone locations. Fi-
nally, in this hearing aid context, we demonstrate the advantage of
the proposed method over a recent method [4] which estimatesSC
filter characteristics directly from the beamformer output.
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