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ABSTRACT 

In most internationally recognized standardized multi-mode 
codecs, signal classification is performed in a single step by either 
linear discrimination or SNR-based metrics. The speech/music 
classifier of the EVS codec achieves greater discrimination than 
these single-step models by combining Gaussian mixture 
modelling (GMM) with a series of context-based improvement 
layers. Additionally, unlike traditional GMM classifiers the EVS 
model adopts a short hangover period, allowing it to track 
transitions between music and speech. Misclassifications are 
mitigated by applying a novel decision smoothing and sharpening 
technique. The results in relatively static environments 
demonstrate that the new two-stage approach with selective 
hangover leads to classification accuracies comparable to 
speech/music classifiers with longer hangovers. They also show 
that the new approach leads to faster and more accurate switching 
of coding modes than conventional classifiers for more complex 
audio environments such as advertisements, jingles and speech 
superimposed on music.  

Index Terms— EVS, GMM, speech/music classification, 
smoothing, sharpening 

1. INTRODUCTION 

The Enhanced Voice Services (EVS) codec comprises numerous 
coding modes, each of which is tailored for a specific class of input 
signals over a given range of bitrates [1]. For example, the ACELP 
mode is most efficient when applied on speech signals at low and 
mid bitrates. The MDCT mode is suitable for pure music or mixed 
content at low, mid and high bitrates. The Generic signal coder 
(GSC) technology provides good quality on generic audio content 
at low bitrates [1]. In order to apply the most appropriate coding 
mode for any type of input signal at any moment, the EVS codec 
uses a novel robust technique of speech/music classification. 

Song et al. have proposed an improvement to the 
speech/music classifier of the 3GPP2 SMV codec [2] based on the 
GMM. In their proposed method, GMM features are calculated as 
running averages of parameters, including the following: LSF, 
signal energy, reflection coefficients and a periodicity counter. The 
initial decision of the EVS speech/music classifier is also based on 
GMM [3] but its features are calculated either instantaneously (in 
the current frame) or as a moving average between those in the 
current and the previous frames. Thus, the effective “memory” of 
the EVS GMM is just one or two frames. This shorter memory 
results in a quicker response time by the classifier to abrupt 
transitions from music to speech; a situation that happens 
frequently in many scenarios including professionally recorded 

radio transmissions, or informally when user talks in the presence 
of background music at discotheques or in shopping malls, cafés 
and pubs. Song et al. [2] report an almost 60% improvement in the 
detection of music by their GMM method when compared to the 
baseline SMV codec. This improvement is achieved on any signal 
containing some trace of music, incl. speech superimposed on 
music. Whilst this may be appropriate for the SMV codec, for the 
EVS codec this would lead to the selection of the MDCT coding 
mode resulting in distortion of speech utterances. In addition, there 
are frequent misclassifications of speech onsets resulting from long 
hysteresis.  

The EVS speech/music classifier operates on 20ms frames 
previously declared as “active” by the VAD [1]. The internal 
sample rate of the classifier is 12800. The classifier has been 
trained and optimized on a signal database sampled at 16000 Hz 
and down-sampled to 12800 Hz. The algorithm has low 
computational complexity and relatively modest memory footprint. 
The block diagram of the classifier is shown in Fig. 1. 

2. FEATURE SELECTION 

The complexity of the classifier is minimized by reusing 
parameters that have been calculated in earlier stages of the codec 
pre-processing, i.e. during LP analysis, spectral analysis and open-
loop pitch analysis. The initial selection of the feature set for the 
GMM was performed by analyzing the correlation matrix of the 
complete set of features whilst running the codec on a training 
database. This technique was reported by Karnebäck in [4] where 
the behavior of the 4Hz modulation feature was analyzed using 
20 critical bands. We have extended Karnebäck’s method by 
incorporating feature averages, their derivatives and logarithms 
computed between the current and the previous frames. In this way 
a set of 68 candidate features, with minimal mutual correlation, 
was derived and analyzed. The list was then pruned by examining 
histograms of individual features and calculating their 
discrimination potential according to the following metric, 
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where mftr
(sp) and mftr

(mus) are the histograms of the feature ftr 
calculated on the speech and the music training database, 
respectively, and M=256 is the total number of bins covering the 
values of the feature ftr, normalized in the range [0;1]. Note that 
each histogram was normalized with the total number of frames in 
the database. The discrimination potential U ranges from 0 (no 
discrimination) to 1.0 (maximum discrimination). This is 
illustrated in Fig. 2. This procedure leads to the following set of 12 
features (with their respective discrimination potentials) finally 
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being selected from the initial 68 candidates; open-loop pitch 
(0.36), normalized correlation (0.37), 5 LSF parameters (0.1-0.28), 
tonality (0.56), non-stationarity (0.54), residual LP error energy 
(0.36), spectral difference (0.38) and spectral stationarity (0.35). A 
detailed description of these features and the exact method of their 
calculation are provided in [1].  

3. THE STATISTICAL MODEL 

The GMM uses 6 components (mixtures). It has been trained by 
the Expectation Maximization (EM) algorithm [5] on a large 
database containing 2 hours of clean speech, 2 hours of noisy 
speech and 3 hours of music (classical, modern, rock and pop, jazz, 
etc.). The clean speech database contained both male and female 
talkers in 7 different languages. The noise database contained car, 
street, office and babble noise at various SNR levels. The music 
database was selected from a collection of various genres of 
classical and modern music, mainly instrumental. The level of all 
input signals was normalized to -26 dBov prior to training.  

The GMM is a weighted sum of K-component Gaussian 
densities (K=6) given by the equation 
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where x is a N-dimensional feature vector (N=12) representing the 
current frame, wk, k=1,...,K are the component weights and 

( , )k kx μ Σ  are the component Gaussian densities. The feature 
vector is normalized prior to the probablity calculation. Fig. 2 
(dotted lines) illustrates the marginal Gaussian densities of the 
GMM after training. The GMM yields two raw probabilities, ps 
and pm, for the speech and the music models, respectively.  

By comparing the values of ps and pm in each frame it is 
possible to obtain a raw discrimination measure between speech 
and music (SM-RAW). This is achieved by calculating the 
difference of the log-probability as 

 log( ) log( )SM m sf p p  . (3) 

The results of the classification based on the SM-RAW are shown 
later in this paper in Table III. The percentage of correct decisions 
appears relatively low due to the fact that only 1-2 frames are taken 
into account during the feature extraction phase.  

4. DECISION SMOOTHING AND SHARPENING 

It was observed that the dynamic range of SM-RAW is relatively 
low and fluctuates around zero, especially in the presence of mixed 
signals. This is illustrated in Fig. 3. On the other hand, it is clear 
that SM-RAW reacts very quickly to transitions from music to 
speech and vice versa. To fully exploit the discrimination potential 
of SM-RAW, SMf  is smoothed and sharpened by the following 
adaptive auto-regressive (AR) filter 

 
[ 1](1 )SM c SM c SMf f f     , (4) 

where γc is a filtering factor in the range [0;1] and the 
superscript [–1] denotes a value from the previous frame. The 
filtered decision, fSM , is denoted SM-SS. The filtering factor is a 
combination of smoothing and sharpening effects. It is calculated 
in each frame according to the following formula 

 , 0.01c E SM cr    , (5) 

where γE is the scaled relative frame energy and rSM is the slope of 
SM-RAW. The relative frame energy Er is computed as the ratio 
between the current frame energy and the estimated background 
noise energy [1]. It is scaled in the speech/music classifier as 

 1 15, 0.01 1E r EE     . (6) 

The scaled relative frame energy has values close to 1 in 
energetically significant segments and values close to 0.01 in the 
background noise. Therefore, if the signal energy is high more 
emphasis is put on fSM to follow the raw decision more closely. On 
the other hand, if the SNR is low, it is naturally more difficult for 
the classifier to make a correct short-term decision and more 
reliance is put on past data; the decision is therefore smoothed. The 
gradient of SM-RAW is also used to sharpen the decision during 
transitions from music to speech (potential speech). This situation 
potentially occurs when fSM < 0 and [ 1]

SM SMf f  . In this case 
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where [ 1]
SMr   is initialized (reset) to the value of –fSM each time when 

[ 1]0SM SMf f   . Thus, the gradient of SM-RAW is positive only 
during frames when fSM is falling below zero and it represents a 
quantitative measure of the decrease. This creates a sharpening 
effect which is illustrated in Fig. 3 (see last but one trace for fSM). 
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Fig. 1: Schematic diagram of the EVS speech/music classifier 
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Fig. 2: Normalized histograms of features and marginal densities of 
the GMM (x-axis scaled to [0;1]) 
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5. SIGNAL PARTITIONING AND HANGOVER 

The efficiency of the speech/music classiffier is further improved 
by combining the raw decisions from 0-7 previous frames. This is 
referred to as the hangover addition or decision smoothing. 
Applying hangover in every frame would lead to misclassifications 
for speech onsets where past information has little relevance. In 
turn, it would lead to the selection of an inapropriate coding mode. 
To avoid this, the signal is first partitioned and a taylored variable-
length hangover is individually applied to each section. 

The input signal is partitioned using a simple state machine as 
shown in Fig. 4. The INACTIVE state is selected as the initial 
state. It is switched to ENTRY state when the VAD goes to unity. 
The ENTRY state marks the first onset after a longer period of 
silence. After 8 frames in the ENTRY state the classifier enters into 
the ACTIVE state which marks a stable signal with sufficient 
energy. If the energy suddenly drops closer to the level of the 
background noise the classifier’s state is changed to UNSTABLE 
where it may stay for up to12 frames. After this period it reverts 
back to the INACTIVE state. If the energy suddenly increases 
while the classifier is in the UNSTABLE state, the classifier enters 
the ACTIVE state, bypassing the ENTRY state. This ensures 
continuity of classification during short pauses.  

With the signal partitioned by the state machine hangover is 
applied according to the conditions defined in Table II. The final 
decision of the speech/music classifier (SM-HO) is binary. With 
the state machine in the INACTIVE state, the classifier output is 
always zero. In the UNSTABLE state, the classifier decision of the 
previous frame is maintained. In the ENTRY state, the classifier 
output is based on a weighted sum of kENT previous values of 
SM-RAW where kENT is the frame counter of the ENTRY state. 
The weighting factors k  are given in Table III.  

6. CONTEXT-BASED IMPROVEMENT LAYERS 

The final decision of the speech-music classifier (SM-HO) is 
reviewed and potentially corrected in the second stage of the 

classifier. The concept of decision correction in the second stage 
has been reported by Chou et al. in [8]. Here, the corrections are 
applied only during specific signal contexts and are usually based 
on long-term statistics.  

As an example, unaccompanied background vocal music may 
contain strong tonal characteristics. Typically, the first stage of the 
classifier declares these frames as “speech” and suggests using the 
ACELP paradigm. In reality, the MDCT or the GSC mode are 
better suited to encode such content. Depending on the signal 
context, a three-way classification is performed at certain bitrates 
to select among ACELP, GSC or MDCT for improved efficiency 
while avoiding any serious artifacts. To achieve this, two further 
independent state machines are deployed gathering statistics over 
eight SM-HO decisions. In addition, tonal features and some other 
features from the first stage are re-analyzed to determine potential 
errors in the classification. In the case that the tonal feature 
analysis indicates the presence of strong vocal music and if the 
previous decisions were mainly indicating “speech”, then the 
decision is adjusted to “music” [1]. 

The context-based switching mechanism also employs the 
following two new features; spectral sparseness and LP efficiency. 
Spectral sparseness is calculated from the log-energy spectrum 
obtained from the spectral analysis and sorted in descending order 
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Fig. 3: Decision smoothing and sharpening on a speech sample 
with background music 
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Fig. 4: State machine for signal partitioning 

TABLE I: Final decision with hangover 

state condition SM-HO (DSM) 

INACTIVE – 0 

UNSTABLE – [ 1]
SMD   

ENTRY – 
[ ]

0

1

2
ENTk

k
SM k SM

k

f f  



   

STABLE 

[ 1,.., 3]0, 1SM SMf D     1 

[ 1]0, 0SM SMf D    0 

otherwise [ 1]
SMD   

TABLE II: Weighting factors for SM-HO in ENTRY state 

kENT α0 α1 α2 α3 α4 α5 α6 α7 

0 1        

1 0.6 0.4       

2 0.47 0.33 0.2      

3 0.4 0.3 0.2 0.1     

4 0.3 0.25 0.2 0.15 0.1    

5 0.233 0.207 0.18 0.153 0.127 0.1   

6 0.235 0.205 0.174 0.143 0.112 0.081 0.05  

7 0.2 0.179 0.157 0.136 0.114 0.093 0.071 0.05 
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of magnitude. It represents the minimum spectral bandwidth that 
covers 75% of the total signal energy, i.e. 
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where fss is the bandwidth representing spectral sparseness, Et is 
the total signal energy and S(f) is the sorted per-bin log-energy 
spectrum [1]. The LP efficiency is based on a ratio of residual 
energies of the LP analysis in the logarithmic domain, i.e. 

 
(13)

log
(1)

err
p

err

E

E


 
   

 
, (9) 

where Eerr(13) and Eerr(1) are the residual energies of 13th order 
and 1st order LP analysis, respectively. To reduce frequent 
switching the LP efficiency is smoothed by summing εp over a 
period of eight consecutive frames, i.e 
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It has been found experimentally that signals with high 
spectral sparseness are better coded with the MDCT mode. At the 
same time, signals with high prediction gain are more naturally 
encoded with the GSC technology. The MDCT coding mode is 
selected by default. The GSC coding mode is selected only for 
signals with high LP efficiency and non-sparse spectrum. Some 
hysteresis is applied to the mode selection if the spectral sparseness 
is reasonably stable. A detailed description of all of the context-
based improvement technologies is provided in [1]. 

7. EVALUATION AND TESTING 

The EVS speech/music classifier has been evaluated using several 
test signals. The clean speech samples (~3-5s) were taken from a 
speech corpus of Recommendation ITU-T P.800-compliant 
sentence pairs [9]. The music samples (~15-20s) were obtained 
from a proprietary database of music extracts. Clean and noisy 
speech, instrumental and vocal music and mixed signals from real 
radio recordings have been evaluated. The samples in each test 
were concatenated by inserting approximately 3s of silence. 
Background signal (noise or music) was added over the clean 
signal at appropriate SNR levels. The manual labeling of the real 
radio recordings was achieved by subjectively listening to the 
synthesized signal obtained by forcing the codec to either ACELP 
or MDCT coding mode and picking the optimum quality decision. 
Recommendation ITU-T G.191 library software tools were used 
for signal manipulation and level adjustment [6].  

Comparison of the classifier described here with the GMM 
method of Song et al. [2] and with the RMS and zero crossings 
method of Panagiotakis et al. [7] is summarized in Table III. The 
method by Song et al. is denoted “SMV” and the method by 
Panagiotakis et al. is denoted “RMS0X”. The table shows the 
percentage of correct “speech” and “music” decisions on the 
following testing signals. The “clean” signal contains only clean 
speech and silence. The “15 dB car”signal contains noisy speech 
signal with 15 dB car noise in the background. In case of “20 dB 
music”, the speech signal is combined with classical background 
music. The “radio mix” contains real recordings of some Canadian 
radio stations in which speech is overlapping with multi-genre 
music at various SNR levels (ranging from 30 dB up to 0 dB). The 
“rock and pop” and “classical” testing signals contain only 
instrumental, single-genre music whereas “opera” contains only 
vocal music.  

From the results it can be seen that the EVS speech/music 
classifier clearly outperforms the method by Panagiotakis et al. on 
all tested signals. The method proposed by Song et al. works well 
for certain music signals but it completely fails to detect speech in 
the radio mix passages. The raw decision of the EVS speech/music 
classifier (SM-RAW) is useful in clean and noisy speech and in 
pure music, but for mixed content, the reliability falls to 60-70%. 
The smoothing and sharpening technique (SM-SS) provides the 
best results on all tested signals. The accuracy is improved by up 
to 13% without sacrificing the performance in rapidly changing 
content (radio mix). The detection of music in radio mix signal is 
only 0.5% worse in SM-SS compared to SM-RAW. Finally, the 
addition of hangover to the decision (SM-HO) slightly improves 
the detection of speech at the expense of some loss in the detection 
of music. This is expected as the objective of SM-HO is to reduce 
accidental switching of SM-SS during stable sections while 
maintaining the fast detection of speech onsets. Fig. 5 shows the 
measured reaction time of the classifier for transitions from music 
to speech and vice-versa. The classifier can be seen to react to 
sudden transitions from music to speech within 20 ms (1 frame). 
The reaction time in the opposite direction is between 100 – 160 
ms (5–8 frames). By comparison, the reaction time of the classifier 
without the smoothing and sharpening method is approximately 
160 – 400 ms in both directions, i.e. more than eight times slower. 

8. CONCLUSION 

In this paper we have presented the EVS speech/music classifier. 
Unlike traditional GMM-based techniques, this classifier has a 
very short hangover period. Frequent misclassification is prevented 
by means of a novel technique based on decision smoothing and 
sharpening. The method described here uses adaptive hangover 
logic which achieves very short reaction times for speech onsets. 
The final decision is also adjusted by a series of context-based 
improvement techniques. The overall accuracy on pure speech and 
music signals is more than 92% which is comparable to state-of-
the-art classifiers and results show that the EVS speech/music 
classifier outperforms the methods of Panagiotakis et al. and Song 
et al on all tested signals. The algorithm forms part of the 3GPP 
EVS codec published as TS 26.445 [1] . 
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Fig. 5: Reaction time to content switching (SM-HO) 

TABLE III: Comparison of speech/music classification accuracy  

 RMS0X SMV SM-RAW SM-SS SM-HO 

sp
ee

ch
 

clean - 1.000 0.947 0.999 0.999 

15 dB car 0.736 - 0.932 0.994 0.997 

20 dB street 0.711 - 0.840 0.973 0.984 

20 dB music 0.651 0.380 0.681 0.837 0.839 

radio mix 0.729 0.170 0.638 0.773 0.775 

m
u

si
c 

rock and pop 0.679 0.950 0.879 0.936 0.934 

classical 0.739 0.710 0.988 0.994 0.995 

opera 0.532 - 0.910 0.941 0.939 

radio mix 0.477 0.830 0.823 0.818 0.817 
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