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ABSTRACT

In this paper, we consider the robust covariance estimation prob-
lem in the non-Gaussian set-up. In particular, Tyler’s M -estimator
is adopted for samples drawn from a heavy-tailed elliptical distri-
bution. For some applications, the covariance matrix naturally pos-
sesses certain structure. Therefore, incorporating the prior structure
information in the estimation procedure is beneficial to improving
estimation accuracy. The problem is formulated as a constrained
minimization of the Tyler’s cost function, where the structure is char-
acterized by the constraint set. A numerical algorithm based on
majorization-minimization is derived for general structures that can
be characterized as a convex set, where a sequence of convex pro-
gramming is solved. For the set of matrices that can be decomposed
as the sum of rank one positive semidefinite matrices, which has
a wide range of applications, the algorithm is modified with much
lower complexity. Simulation results demonstrate that the proposed
structure-constrained Tyler’s estimator achieves smaller estimation
error than the unconstrained case.

Index Terms— Robust estimation, Tyler’s scatter estimator,
structure constraint, majorization-minimization.

1. INTRODUCTION

Estimating the covariance matrix of random variables from observed
samples has been a ubiquitous problem that arises in many applica-
tions in signal processing, and closely related to fundamental prob-
lems such as coherence estimation, component analysis, time series
analysis, etc. It has been realized that the sample covariance estima-
tor, which coincides with the maximum likelihood estimator (MLE)
under an independent and identically distributed (i.i.d.) Gaussian
noise assumption, is not suitable in many real-world applications. A
main cause of the failure of the Gaussian assumption is that real-
world data are often corrupted by noise and outliers, and the sample
covariance matrix is sensitive to abnormal data in the sense that er-
roneous observations can severely decrease the estimation accuracy.
To address the aforementioned problem, robust M -estimators were
proposed to limit the influence of abnormal samples. As a partic-
ular case, Tyler’s M -estimator for scatter matrix has received con-
siderable attention recently and demonstrated to work effectively in
various kinds of applications with proper modifications [1–6].

Apart from the heavy-tailed empirical distribution of the sam-
ples and outlier contamination, another problem that modern appli-
cations frequently encounter is the insufficient number of samples
compared to the number of parameters being estimated. Conse-
quently, many traditional estimators, including Tyler’s estimator, fail
to achieve satisfactory estimation accuracy. A popular way to tackle
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this problem in the literature is through regularization, some com-
monly used regularization techniques include shrinkage to a given
prior [1, 6–9], imposing sparsity assumption [10], and threshold-
ing [11], each designed for different applicable scenarios.

In this paper we are interested in applications where the covari-
ance matrix is known to have certain structure. Instead of estimat-
ing the covariance matrix with the blanket assumption that it is Her-
mitian positive semidefinite, a natural idea is to impose additional
structure assumption on the estimator [12–15], which typically re-
duces the number of parameters to be estimated. We formulate the
problem as minimizing the Tyler’s cost function under the struc-
ture constraint. Instead of trying to find the global optimal directly,
which becomes a challenging task due to the non-convexity of the
objective function, algorithms are derived based on the majorization-
minimization framework that converge to a stationary point. We first
work out the algorithm for a general structure that can be character-
ized as a convex set, where a sequence of convex programming is
solved. Then, we consider a specific structure that consists of ma-
trices can be decomposed as the sum of rank one Hermitian positive
semidefinite matrices. Many applications in practice, such as the
direction-of-arrival (DOA) estimation problem, involve this type of
covariance. In such a case the algorithm can be modified to signif-
icantly reduce the computational load. Numerical results are pro-
vided in the end and the performance of the proposed estimator is
compared with the COCA estimator [12].

2. TYLER’S ESTIMATOR WITH CONVEX STRUCTURE
CONSTRAINT

Consider a number of N samples {x1, . . . ,xN} with xi ∈ CK

drawn independently from an elliptical underlying distribution with
probability density function (pdf) as follows:

f (x) = det (R0)
−1 g

(
xHR−1

0 x
)
,

where R0 � 0 (Hermitian positive definite) is the scatter parameter
that is proportional to the covariance matrix if it exists, and g (·)
characterizes the shape of the distribution. Tyler’s estimator for R0

is defined as the solution to the fixed-point equation

R =
K

N

N∑
i=1

xix
H
i

xH
i R−1xi

,

which can be interpreted as a weighted sum of rank one matrices
xix

H
i with weight decreasing as xi gets farther from the center [2].1

An alternative interpretation is that Tyler’s estimator can be viewed

1In the original paper [2] xi is real-valued, but can be generalized to the
complex-valued case.
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as the maximum likelihood estimator of R0 for an angular central
Gaussian distribution

f (s) ∝ det (R0)
−1
(
sHR−1

0 s
)−K

. (1)

It is known that if x is elliptically distributed, then the pdf of the
normalized sample s = x

‖x‖2
will take the form of (1) [3]. Notice

that f (s) does not depend on g (·) , which indicates that Tyler’s es-
timator works for all elliptical distributions. Also the normalization
procedure eliminates the influence of the magnitude of an outlier on
the estimator. As a tradeoff, Tyler’s estimator only estimates R0 up
to a positive scale factor.

Despite of the attractive properties, as most of the classical
covariance estimators, Tyler’s estimator requires sufficiently many
samples to achieve satisfactory estimation accuracy, which limits its
scope of application in high dimensional estimation problems. A
way to tackle this problem is to introduce some prior information of
the covariance matrix into the estimation. The prior information that
we are interested in herein is that R0 takes certain structure that can
be characterized by a set C that is the intersection of a closed convex
set and the set of Hermitian positive semidefinite matrices.

Mathematically, the following problem is solved:

minimize
R

log det (R) +
K

N

N∑
i=1

log
(
xH
i R−1xi

)
subject to R ∈ C.

(2)

As the objective function, denoted by L (R), is non-convex, finding
the global optimal of problem (2) is challenging. In this work we
focus on design algorithms that find a stationary point instead, whose
complexity is more tractable. Although the limit point generated
by the algorithm may not be globally optimal, the estimator usually
achieves satisfactory performance as shown in the numerical section.

The rest of the paper is based on the assumption that L (R) →
+∞ as R converges to a singular limit (N > K is sufficient to
meet this assumption if f (x) is continuous), under which a solu-
tion of (2) exists. To solve problem (2), we refer to the idea of
majorization-minimization [17]. Specifically, since the log (·) and
log det (·) functions are concave, the objective function L (R) can
be upper bounded by the convex function

g (R|Rt) = Tr
(
R−1

t R
)
+
K

N

N∑
i=1

xH
i R−1xi

xH
i R−1

t xi

+ const. (3)

with equality achieved at Rt. At the (t+ 1)-th iteration, the variable
is updated as

Rt+1 = argmin
R∈C

g (R|Rt) . (4)

For notation simplicity, define matrix Mt = K
N

∑N
i=1

xix
H
i

xH
i R−1

t xi
.

The inner minimization problem takes the form:

minimize
R

Tr
(
R−1

t R
)
+ Tr

(
MtR

−1)
subject to R ∈ C,

(5)

which is a convex problem. The minimizer Rt+1 is nonsingular,
since L (R) is upper-bounded by g (R|Rt) and L (R) → +∞ as
R converges to a singular limit by assumption.

Following the standard majorization-minimization convergence
result, we conclude that every limit point of the sequence {Rt} is a

stationary point of the problem (2). Note that for most of the struc-
ture constraints that arise in the applications, the set C possesses the
property that R ∈ C iff rR ∈ C for all r > 0 , in this case we can
add a normalization step after the minimization:

R̃t+1 = argmin
R∈C

g (R|Rt)

Rt+1 = R̃t+1/Tr
(
R̃t+1

)
,

the sequence {Rt} then converges to the set of stationary points of
the equivalent problem

minimize
R∈C

log det (R) +
K

N

N∑
i=1

log
(
xH
i R−1xi

)
subject to Tr (R) = 1.

The algorithm described above can be tuned with higher effi-
ciency if more detailed information of C is available. For instance,
if we can further assume that the structure constraint is linear, which
includes important examples such as the set of Toeplitz matrices,
banded matrices, persymmetric matrices and so on, then applying
Schur complement for a positive definite matrix reveals that solv-
ing (5) can be reformulated as the following equivalent semidefinite
programming (SDP):

minimize
S,R∈C

Tr
(
R−1

t R
)
+ Tr (MtS)

subject to
[

S I
I R

]
� 0.

In the next section, we are going to restrict further to a specific
family of linear constraint that has a wide range of application in
signal processing, and show that simple and fast algorithms can be
derived by properly exploiting the structure.

3. TYLER’S ESTIMATOR FOR DECOMPOSABLE
COVARIANCE

In this section, we focus on the class of structure C that can be de-
scribed as

C =

{
R|R =

L∑
j=1

pjaja
H
j

}
, (6)

where the aj’s are complex-valued given “basis vectors” and the
pj’s are real-valued nonnegative coefficient variables. Clearly,
R is a Hermitian positive semidefinite matrix. Define the non-
negative vector p , [p1, . . . , pL], R can be expressed com-
pactly as R = APAH , where A = [a1, . . . ,aL], and P =
diag (p1, . . . , pL). Notice that the signal plus noise model R =
APAH + Σ with Σ = diag (σ1, . . . , σK), can also be rewritten
as R = ÃP̃ÃH by defining the augmented matrices Ã = [A, IK ],
P̃ = diag (p̃1, . . . , p̃L+K) with p̃j = pj for j = 1, . . . , L and
p̃j = σj−L for j = L+ 1, . . . , L+K.

Similar to the general convex structure, we majorize both parts
of L (R). At the t-th iteration, the surrogate function g (R|Rt) is
defined as (3) and the inner minimization problem takes the form:

minimize
R,p

wH
t p +

N∑
i=1

x̃H
i R−1x̃i

subject to R = APAH

p ≥ 0,

(7)
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with
wt = diag

(
AHR−1

t A
)
,

x̃i =

√
K

N

xi√
xH
i R−1

t xi

.

The problem above, which is convex, is well studied in the literature.
A cyclic algorithm similar to LIKES [18] can be derived, which is
more computationally efficient than simply calling a convex solver.
The procedure is stated in Alg. 1.

Algorithm 1 Robust LIKES for decomposable covariance estima-
tion

1: Set t = 0, initialize pt to be any positive vector.
2: repeat
3: Rt = APtA

H

4: wt = diag
(
AHR−1

t A
)
; x̃i =

√
K
N

xi√
xH
i R−1

t xi

5: Set r = 0, pr = pt

6: repeat
7:

(βi)r+1 = PrA
H
(
APrA

H
)−1

x̃i

(pj)r+1 =

√√√√(∑
i

∣∣(βij)r+1

∣∣2) / (wj)t

(8)

8: r ← r + 1
9: until some convergence criterion is met

10: pt+1 = pr−1

11: t← t+ 1
12: until some convergence criterion is met

Alg. 1 requires a double loop, where the outer loop updates the
surrogate function g (R|Rt) and the inner loop iteration (8) solves
(7). In this section, we propose a single loop algorithm that treat P
as variable directly instead of R and find a surrogate function of

L (P) = log det
(
APAH

)
+
K

N

N∑
i=1

log

(
xH
i

(
APAH

)−1

xi

)
.

To be precise, at point Pt, for the first term we have log det
(
APAH

)
≤

wH
t p as before. For the second term, recall that the concave prop-

erty of log (·) function leads to the following inequality

K

N

N∑
i=1

log
(
xH
i R−1xi

)
≤ Tr

(
MtR

−1)+ const.

with equality achieved at R = Rt, or equivalently, P = Pt. In
the next step, we are going to find an upper bound for the quantity
Tr
(
MtR

−1
)

with equality achieved at P = Pt. We claim that

Tr
(
MtR

−1) ≤ Tr
(
MtR

−1
t APtP

−1PtA
HR−1

t

)
. (9)

To see this, first of all since R = APAH , it is easy to check equality
holds at P = Pt. Next, from the identity

S =

[
R−1

t APtP
−1PtA

HR−1
t I

I APAH

]
=

[
R−1

t APtP
−1/2

AP1/2

] [
P−1/2PtA

HR−1
t P1/2AH

]

we know the matrix S is positive semidefinite. By Schur comple-
ment, if R = APAH � 0 , S � 0 is equivalent to

R−1
t APtP

−1PtA
HR−1

t �
(
APAH

)−1

,

the inequality (9) follows as Mt is Hermitian positive semidefinite.
Therefore, ignoring the constant term, the function L (P) is ma-
jorized by

g (P|Pt) = wH
t p +Tr

(
MtR

−1
t APtP

−1PtA
HR−1

t

)
,

which is not only convex in each pj , but also separable. Denote the
diagonal elements of matrix PtA

HR−1
t MtR

−1
t APt by dt, which

is real-valued, the update of P can be found as follows:

(pj)t+1 =
√

(dj)t / (wj)t. (10)

The procedure is stated in Alg. 2.
A closer examination at the two algorithms reveals that com-

pared to Alg. 1, Alg. 2 just iterate the inner loop (8) for one time
instead of iterate until the sequence {pr} converge, thus is expected
to converge within a fewer number of iterations. We note that Alg.
2 also applies to the Gaussian maximum likelihood fitting problem
that LIKES solves with a faster speed.

Algorithm 2 Single loop majorization-minimization for robust de-
composable covariance estimation

1: Set t = 0, initialize pt to be any positive vector.
2: repeat
3: Rt = APtA

H

4: wt = diag
(
AHR−1

t A
)

5: Mt =
K
N

∑N
i=1

xix
H
i

xT
i R−1

t xi

6: dt = diag
(
PtA

HR−1
t MtR

−1
t APt

)
7: (pj)t+1 =

√
(dj)t / (wj)t

8: t← t+ 1
9: until some convergence criterion is met

Despite problems such as the DOA estimation where Alg. 2 can
be directly used, we introduce its application to the estimation of
a real-valued Toeplitz covariance matrix. Consider a class of posi-
tive semidefinite Toeplitz matrices TK parameterized by its first row
[t0, t1, . . . , tK−1], and each element tij satisfies tij = t|i−j|. The
Topelitz constraint is clearly linear, therefore the sequential SDP al-
gorithm for general convex constraint applies. However, by explor-
ing the structure of a Toeplitz matrix, a more efficient algorithm can
be derived as stated below.

Inspired by the idea of [19], we consider Toeplitz matrices by
embedding it as the upper-left part of a circulant matrix of larger
size. The advantage is that by circulant embedding, R can be written
in the form of (6), and Alg. 2 can be adopted.

Specifically, the feasible set is restricted to be a subset ofK×K
real-valued symmetric Toeplitz matrices, denoted by TL, that can be
embedded as the upper-left part of a real-valued symmetric circulant
matrix of size L× L with L > K. If R ∈ TL, it can be written as

R = Adiag (p0, . . . , pL−1)AH ,

where
A =

[
IK 0

]
FL,
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with FL being a Fourier transform matrix of size L × L. By the
previous argument, at the t-th iteration Pt+1 is the solution of the
following problem

minimize
p≥0

wH
t p +Tr

(
MtR

−1
t APtP

−1PtA
HR−1

t

)
subject to pj = pL−j , ∀j = 1, . . . , L− 1.

Denote the diagonal elements of matrix PtA
HR−1

t MtR
−1
t APt

by dt, the update for p is given in closed-form as

(p0)t+1 =
√

(d0)t / (w0)t

(pj)t+1 =
√(

(dj)t + (dL−j)t
)
/
(
(wj)t + (wL−j)t

)
.

4. NUMERICAL RESULTS

In this section we present numerical results that demonstrate the ad-
vantage of incorporating a prior structure information into the esti-
mator in reducing the estimation error. We also compare the pro-
posed estimator with the estimator named COCA derived in [12]
that deals with the Tyler’s estimator with structure constraint. The
estimation error is evaluated by the normalized mean-square error,
namely

NMSE
(
R̂
)
= E

∥∥∥R̂−R0

∥∥∥2
F
/ ‖R0‖2F ,

where all matrices are normalized by their trace. The expected value
is approximated by 100 times Monte Carlo simulations. The samples
in all the simulations of this section are drawn independently from
an elliptically distributed random variable x =

√
τu , where τ ∼ χ2

and u ∼ N (0,R0), with K = 15.
In the simulation, R is chosen to be a Toeplitz matrix of the form

R (β)ij = β|i−j|. (11)

The model attracts a great deal of interest as it corresponds to the
autocovariance matrix of an AR(1) process. Figs. 1 and 2 show the
NMSE of different estimators as N increases from 20 to 200 with
β being 0.4 and 0.8, respectively. The size of the circulant matrix
L is set to be 2K − 1 (minimal embedding). We can see that in
both cases, circulant embedding approximation achieves almost the
same estimation error as imposing Toeplitz constraint and solve via
the sequential SDP algorithm. While for β = 0.4 the proposed
estimator achieves roughly the same estimation error as COCA, it
outperforms the COCA estimator in the β = 0.8 case.

Fig. 3 plots the number of iterations versus the objective value
that the robust LIKES and the proposed Alg. 2 require for the β =
0.8 case. Clearly Alg. 2 converges much faster than the double loop
robust LIKES. We do not compare with the COCA and sequential
SDP algorithms here as they are SDP based methods, whose compu-
tational complexity are much higher.

5. CONCLUSION

In this paper we have considered the robust covariance estimation
problem with structure prior information. The problem has been for-
mulated as a constrained optimization problem and algorithms based
on majorization-minimization have been proposed to solve the prob-
lem efficiently. Numerical results have demonstrated that including
structure information helps in improving the estimation accuracy.
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