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ABSTRACT

This paper is concerned with determining the number of correlated
signals between two data sets using canonical correlation analysis
(CCA) when a principal component analysis (PCA) preprocessing
step is performed for initial rank reduction. In signal processing ap-
plications, it is commonplace in scenarios with large dimensions,
insufficient samples, or knowledge of low-rank underlying signals
to extract the principal components of the data before correlation is
analyzed. While there exist information-theoretic criteria to either
determine the number of signals in a single data set or the number
of correlated signals between two data sets, there has yet to be a
treatment of the joint order estimation of the number of dimensions
which should be retained through the PCA preprocessing and the
number of correlated signals. We present the likelihood and infor-
mation criteria for this scenario, along with some verifying simula-
tions.

Index Terms— Canonical correlation analysis, dimension re-
duction, information criteria, model-order estimation, principal
component analysis

1. INTRODUCTION

Measuring and analyzing multivariate association between two sets
of data is a common objective, with numerous applications in many
areas of the natural and social sciences and engineering. The most
widely used technique is canonical correlation analysis (CCA) [1].
In CCA, the observed data x ∈ IRn and y ∈ IRm are transformed into
p-dimensional internal (latent) representations a = Sx and b = Ty,
where p ≤ min(m,n), using linear transformations described by the
matrices S ∈ IRp×n and T ∈ IRp×m. The key idea is to determine S
and T so that most of the correlation between x and y is captured in
a low-dimensional subspace.

CCA proceeds as follows. First two vectors s1 ∈ IRn and t1 ∈
IRm are determined such that the absolute value of the scalar cor-
relation coefficient k1 between the internal variables a1 = sT

1 x and
b1 = tT

1 y is maximized. The internal variables (a1,b1) constitute the
first pair of canonical variables, and k1 is called the first canonical
correlation. The next pair of canonical variables (a2,b2) maximizes
the absolute value of the scalar correlation coefficient k2 (the second
canonical correlation) between a2 = sT

2 x and b2 = tT
2 y, subject to the

constraint that they are to be uncorrelated with the first pair. A total
of p correlations is determined in this manner, and S = [s1, ...,sp]

T ,
T = [t1, ..., tp]

T . CCA can be performed via the singular value de-
composition [2]

R−1/2
xx RxyR−1/2

yy = FKGT , (1)
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where Rxy is the cross-covariance matrix between x and y, and Rxx
and Ryy are the auto-covariance matrices of x and y. The canoni-
cal correlations are the singular values, which are the diagonal el-
ements of the diagonal matrix K. Moreover, S = FT R−1/2

xx and
T = GT R−1/2

yy .
In practice, we do not know the covariance matrices and must

estimate them from samples. Let us assume that x and y have
zero mean and that we observe M sample pairs (xi,yi). These
are commonly assembled in matrices X = [x1 x2 · · · xM ] and
Y = [y1 y2 · · · yM ], from which the sample covariance matrices
R̂xx = XXT /M, R̂xy = XYT /M, and R̂yy = YYT /M are computed.
If CCA is performed based on these sample covariance matrices it
leads to estimated (sample) canonical correlations k̂i. But how can
we tell from these estimated canonical correlations how many actual
correlated components there are? This is a question of model-order
selection, and may be addressed using information-theoretic criteria
(ICs). The idea of these criteria is to compute a score as a func-
tion of model order (the number of free parameters). This score is
the difference between the likelihood for the observed data, which
measures how well the model fits the observed data, and a penalty
function. With increasing number of free parameters, the model
fit becomes better. In order to avoid overfitting, complex models
are penalized by the penalty function, which increases with model
order. The best trade-off is achieved when the difference of likeli-
hood and penalty function is maximized. The advantage of ICs over
framing the problem as a hypothesis test is that they do not require
the selection of any subjective thresholds [3]. For the two-channel
problem, [4–7] have used ICs to determine the number of correlated
signals.

In many cases, however, CCA is not directly applied to the raw
data X and Y. Especially in the cases of insufficient samples, large
dimensions of x and y, or known existence of low-rank underlying
signals [8], it is common practice to use a principal component anal-
ysis (PCA) preprocessing step. That is, instead of applying equa-
tion (1) directly to the sample covariance matrices, we first extract a
number r1 of components from x that account for a large fraction of
the total variance in x, by applying an eigenvalue decomposition to
the sample covariance matrix R̂xx. Similarly, we extract r2 compo-
nents from y that account for a large fraction of the total variance in
y. CCA is then performed on the components extracted from x and
y. Model-order selection now needs to determine three numbers:
the number of components r1 to be extracted from x, the number of
components r2 to be extracted from y, and the number of meaning-
ful canonical correlations r3 that can be extracted from the reduced-
dimensional CCA. A complicating factor is that the components of
x that account for most of the variance in x and the components of y
that account for most of the variance in y do not have to be the com-
ponents that account for most of the correlation between x and y.

Model-order selection in the joint PCA-CCA approach has not
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yet received the attention that it arguably deserves. Most previous
techniques are rather heuristic (e.g., [9, 10]). In this paper, we ad-
dress this deficiency by presenting ICs for jointly determining the
useful PCA dimension reduction as well as the number of correlated
signals in a two-channel model.

Notationally, we use (·)−1 to indicate the appropriate matrix
(pseudo-)inverse (depending on the rank of the argument). Bold
uppercase/lowercase symbols indicate matrices/vectors. We denote
matrix trace as tr{·} and determinant as | · |.

2. PROBLEM FORMULATION

Keeping in the spirit of previous approaches to model-order deter-
mination [3–6], we use the following two-channel model:

x = Axsx +Bxzx +nx

y = Aysy +Byzy +ny (2)

In this model, zx and zy are q3-dimensional signals correlated be-
tween x and y, and sx and sy are q1- and q2-dimensional signals
present only in x and y, respectively, which are assumed to be uncor-
related with each other and uncorrelated with zx and zy. The matrices
Ax, Bx, Ay, By, as well as the dimensions q1, q2, and q3 are fixed but
unknown. Without loss of generality, we may assume that [Ax,Bx]
and [Ay,By] each have full column-rank, the auto-correlation matri-
ces of sx, sy, zx, zy are identity matrices, and the cross-correlation
matrix between zx and zy is diagonal. The dimension of x and nx is
n, which does not have to match the dimension m of y and ny. All
signals and noise are real-valued Gaussian with zero mean, and the
noise is white and uncorrelated with the signals.

While some information-theoretic model-order selection tech-
niques do not assume white noise [5, 11], most previous work relies
on this assumption [3–6]. Since we are looking for both the useful
PCA dimension reduction as well as the number of correlated sig-
nals, we must assume white noise to allow distinguishing the noise
space from the signal space before dimension reduction.

We take M independent and identically distributed (i.i.d.) sam-
ples from the model (2), from which we compute the sample co-
variance matrices R̂xx, R̂xy, and R̂yy. Our task is now to jointly
determine, from these sample covariance matrices and based on ICs,
how many dimensions r1 the PCA of x should keep, how many di-
mensions r2 the PCA of y should keep, and how many correlated
components r3 there are. The goal is to choose the dimensions r1
and r2 such that the PCA preprocessing step preserves the correlated
components. However, we are not interested in the components sx
and sy that are present only in x and y, respectively. Hence, it would
actually be beneficial if the PCA preprocessing step were to elimi-
nate those components (which is not generally possible).

3. INFORMATION-THEORETIC CRITERIA

ICs are computed as the likelihood for observing the data given a par-
ticular model and model order, minus a penalty term that increases
with model order [12–14]. In our case, the likelihood is computed
assuming a PCA-CCA model. That is, the coordinate system for the
initial rank reduction is given by PCA (i.e., the eigenvectors of R̂xx
and R̂yy), and the coordinate system for analyzing correlation is de-
termined by CCA. Therefore, our likelihood is a function of three
parameters only: r1, r2, and r3. In general, PCA would not be opti-
mum for the initial rank reduction. However, in this work we do not
attempt to find such an optimum rank reduction scheme.

It is necessary to make distinct the model versus the sample auto-
covariances. The model auto-covariance for the x-channel is [3]

Rxx = Ur1(ΛΛΛr1 − Ir1 σ
2
x)U

T
r1
+ Inσ

2
x (3)

= Ux

[
ΛΛΛr1 0
0 I ·σ2

x

]
UT

x ,

where Ux is composed of the eigenvectors, and Ur1 of the first r1
eigenvectors, of R̂xx, ΛΛΛr1 is an r1 × r1 matrix with the largest r1
eigenvalues on the diagonal, and σ2

x = 1
n−r1

∑
n
i=r1+1 λx,i, following

[3], represents the approximation of the white noise power (within x)
assumed present in the smallest eigenvalues. The model for Rxx in
(3) depends on r1, which is the number of signal components kept.
A similar form with r2 components constitutes the model for Ryy
with noise power approximation σ2

y.
In order to define the model cross-covariance, we start with the

singular value decomposition (SVD)

R−1/2
xx R̂xyR−1/2

yy = FKGT ,

where ki(r1,r2), i = 1, . . . ,r3, . . . ,min{n,m} are the diagonal ele-
ments of K, which are the model canonical correlations. A rank-r3
model is now obtained by considering only the r3 largest canonical
correlations in the SVD. We write this as

Cxy = Fr3 Kr3 GT
r3
,

where Fr3 is n× r3, Kr3 is r3× r3, and Gr3 is m× r3. We call Cxy
the model coherence matrix. Hence, the model cross-covariance is
obtained as

Rxy = R1/2
xx CxyR1/2

yy .

3.1. Likelihood

We would like to obtain model-order estimates that account only for
the correlated terms between x and y. Hence, we are not interested in
how well the model fits the observations X and Y. Rather, we would
like to know how well the model fits the correlated parts of X and Y,
in other words, those parts of X that tell us something about Y, and
vice versa. One might first think of tackling this issue by looking at
how well X can be estimated from Y. However, optimal (i.e., min-
imum mean-squared error) estimation is not symmetric: Estimating
x from y leads to a different mean-squared error than estimating y
from x. Since CCA is a symmetric correlation analysis technique
(i.e., the roles of x and y may be interchanged), we instead look
at how well whitened u = R−1/2

xx x can be estimated from whitened
v = R−1/2

yy y. For this setup, interchanging the roles of u and v leaves
the mean-squared error unchanged.

Thus, we consider the estimation error for estimating u from v,
which is

e = u−Cxyv,

and look at how well our model explains the sample error matrix

E = R−1/2
xx X−CxyR−1/2

yy Y.

The model error covariance is

Q = E{eeT }= F
(

I−
[

Kr3 KT
r3

0

])−1
FT , (4)
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and the sample error covariance matrix is

Q̂ =
1
M

EET = R−1/2
xx R̂xxR−1/2

xx −CxyR−1/2
yy R̂T

xyR−1/2
xx

−R−1/2
xx R̂xyR−1/2

yy CT
xy +CxyR−1/2

yy R̂yyR−1/2
yy CT

xy.

Since we have i.i.d. Gaussian samples, the likelihood for E given our
model is [15]

f (E;Q) = const.×|Q|−M/2 exp
{
−1

2
tr
{

Q−1Q̂
}}

. (5)

It can be shown that the trace term in this expression may be simpli-
fied to yield the following log-likelihood (omitting any terms that do
not depend on r1, r2, and r3):

`(r1,r2,r3) =−
M
2
· log

(
r3

∏
i=1

(1− k2
i (r1,r2))

)

− 1
2

r3

∑
i=1

k2
i (r1,r2)

1− k2
i (r1,r2)

(
γr1,i + γr2,i−2

)
. (6)

As before, we include the arguments (r1,r2) of the canonical cor-
relations to emphasize the dependence on the rank of the whitening
matrices. Furthermore, we call γr1,i and γr2,i the alignment coeffi-
cients, which are defined as

γr1,i =
r1

∑
k=1
|fT

i ux,k|2 +
n

∑
k=r1+1

λx,k
σ2

x
|fT

i ux,k|2

γr2,i =
r2

∑
k=1
|gT

i uy,k|2 +
m

∑
k=r2+1

λy,k
σ2

y
|gT

i uy,k|2. (7)

Here, fi, gi, ux,k, and uy,k denote the respective columns of F, G, Ux,
and Uy. The alignment coefficients represent the degree to which the
mismatch between the model covariance Rxx and the sample covari-
ance R̂xx (resp., Ryy and R̂yy) affects the canonical representations
of correlated data (i.e., the left and right singular vectors of the coher-
ence matrix). Thus, extreme mismatches in the sample eigenvalues
and the estimated white noise level cause non-unit alignment coeffi-
cients to act as an internal penalty to the likelihood.

If there is no initial rank-reduction (i.e., no PCA pre-processing
step), then r1 = n and r2 = m and the alignment coefficients are
γr1,i = 1 and γr2,i = 1, ∀ i. In this case, the nonconstant terms in
the log-likelihood can be shown to be

`(r3) =
M
2

log

(
min{n,m}

∏
i=r3+1

(1− k2
i )

)

which is the solution given in [5,6]. Note that in this case the canon-
ical correlation coefficients ki are obviously no longer functions of
r1 and r2.

3.2. Akaike and Bayesian information criteria

The number of model terms (degrees of freedom) utilized in the
model covariance matrices can be determined similar to [3, 5] and
results in

d =
r1

2
(2n− r1 +1)+

r2

2
(2m− r2 +1)+ r3(n+m− r3)+2. (8)

The first summand in d accounts for the degrees of freedom in mod-
eling the signal part of Rxx, the second summand for the degrees of

freedom in the signal part of Ryy, the third for the correlated parts in
Rxy, and the final summand accounts for the two model parameters
σx and σy.

Utilizing the log-likelihood (6) along with the number of free pa-
rameters d, we can write down the Akaike IC (AIC) and the Bayesian
IC (BIC), which are to be maximized over r1, r2, and r3, as

AIC = 2`(r1,r2,r3)−2 ·d (9)

BIC = `(r1,r2,r3)−
1
2

log(M) ·d. (10)

It is well-known that the AIC tends to overfit the data, i.e., results in
too large a model order, as the number of samples M increases.

An additional comment regarding the implementation of these
ICs is in order: In the presence of perfectly correlated signals (i.e.,
there is ki = 1 for some i), we must assume the correlated signal
a part of the final model and evaluate the remainder of the likeli-
hood terms. Moreover, a mismatch in the terms used for the white
noise approximation can cause a canonical correlation greater than
one. The test indices for such a whitening model are left out from
consideration as the correct model.

4. SIMULATION RESULTS

In this section we show simulation results to demonstrate the effec-
tiveness of the presented ICs. The data are generated according to the
model in (2). To construct the Ax and Bx matrices, the eigendecom-
position of the outer product of an n×M matrix with random normal
entries with itself is taken, from which q1 +q3 eigenvectors are ran-
domly selected (an analogous procedure is applied to construct Ay
and By). In our examples, the signals zx and zy are perfectly corre-
lated, i.e., zx = zy.

In the first example, there is one independent x-channel signal
(q1 = 1) with variance 3, two independent y-channel signals (q2 = 2)
also with variance 3, and one correlated signal (q3 = 1) with variance
5. All noise components have variance 1. The dimension of x is
n = 20 and the dimension of y is m = 18. Figure 1 illustrates the
behavior of the model-order estimates for different sample sizes M.
Here, 2’s represent the estimate of a the model rank r1 for the PCA
of x, ◦’s the estimate of the model rank r2 for the PCA of y, and ×’s
the estimate of the model rank r3 for the number of correlated terms.
As the interfering independent signals are weaker than the correlated
signal, we would expect r1 = r2 = r3 = 1, which is the choice of both
AIC and BIC for a sufficiently large number of samples. The bottom
plot in the figure shows the corresponding probability of error in
estimating the model orders. A close look reveals that AIC starts to
overestimate the model order for large number of samples.

In the second example, we consider the case where the inde-
pendent (interfering) signals are stronger than the correlated sig-
nal. Here, the variance of each independent signal component is
10, whereas the correlated signal has variance 7. Otherwise the set-
tings are the same as before. We would expect r1 = q1 + q3 = 2,
r2 = q2 +q3 = 3, and r3 = q3 = 1, which again is the choice of both
AIC and BIC for a sufficiently large number of samples. As shown
in Figure 2, BIC performs better than AIC, especially when deter-
mining the number of correlated signals r3 for smaller number of
samples.

5. CONCLUSIONS

This paper presents an extension of the very well treated and ubiq-
uitously applied information criteria for model-order selection to the
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Fig. 1. Varying the number of samples M. 2’s represent the esti-
mate of r1, ◦’s the estimate of r2, and ×’s the estimate r3, averaged
over 100 Monte Carlo runs. In this scenario, the correlated signal is
stronger than the independent signals.

scenario where the goal is to determine the number of correlated
signals between two data sets in a combined PCA-CCA approach.
Most previous approaches have been rather heuristic. To the best of
our knowledge, this is the first paper to provide a systematic way
of jointly choosing the optimum PCA dimension reduction and the
number of correlated signals in CCA using information criteria.
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