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ABSTRACT

Correlation tests of multiple Gaussian signals are typically
formulated as linear spectral statistics on the eigenvalues of
the sample coherence matrix. This is the case of the Gen-
eralized Likelihood Ratio Test (GLRT), which is formulated
as the determinant of the sample coherence matrix, or the
locally most powerful invariant test (LMPIT), which is for-
mulated as the Frobenius norm of this matrix. In this paper,
the asymptotic behavior of general linear spectral statistics
is analyzed assuming that both the sample size and the ob-
servation dimension increase without bound at the same rate.
More specifically, almost sure convergence of a general class
of linear spectral statistics is established, and an associated
central limit theorem is formulated. These asymptotic results
are shown to provide an accurate statistical description of the
behavior of the GLRT and the LMPIT in situations where the
sample size and the observation dimension are both large but
comparable in magnitude.

Index Terms— Coherence matrix, correlation test, ran-
dom matrix theory, central limit theorem.

1. INTRODUCTION

The problem of testing the structure of the covariance matrix
of a set of multivariate Gaussian observations has applications
in multiple fields, such as sensor networks, radar, radioastron-
omy, finance or cognitive radio. Typically, one needs to test
whether the covariance matrix of the observations is propor-
tional to the identity matrix (sphericity test [1, 2]), or whether
it is a positive diagonal matrix (correlation test). The first
problem is equivalent to testing whether the constituent scalar
random variables are independent and identically distributed
(i.i.d.) whereas the second problem is equivalent to whether
the constituent signals are mutually independent but not nec-
essarily identically distributed. In this paper, we will focus
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on this second test, namely the correlation test for Gaussian
distributed observations.

Lety,, n = 1...N, denote a collection of M x 1 i.i.d.
random vectors following a zero-mean Gaussian distribution
with covariance matrix R j;, and consider the corresponding
sample covariance matrix

1
Ry = ~ Z Yn¥u-
n=1
Let Dy and D m denote the diagonal matrices constructed
from the diagonal entries of Rj; and R, respectively, i.e.

Dy =dg (Ras) = Ry @Iy and Dy = dg (RM), where
©® is the Hadamard (element-wise) product and I, is the M x

M identity matrix. The main focus of this paper is on the
following binary hypothesis test:

HO LY C./\/‘(O,R]u), R]u = DM
Hl LY CN(O,RM), RM 7é DJ\I-

One of the first contributions addressing this problem can be
traced back to work in [3], which derived the Generalized
Likelihood Ratio Test (GLRT) for this problem assuming that
the observations are real-valued. It was shown in [3] that, as-
suming N > M, the GLRT rejects the null hypothesis for
large enough values of the following statistic

—1 N
ﬁ]%LRT =7 log det (CM) (1)
where € is the sample coherence matrix, defined as
Cy =D} *RyD;}?

and where (-)1/ % denotes the positive square root. It was
more recently shown [4, 5] that the above GLRT also holds
for complex-valued Gaussian random variables. Other ex-
tensions of the GLRT to more general statistical observation
structures can be found in [6, 7, 8].

The GLRT is known to be asymptotically optimal when
the number of samples tends to infinity N — oo, but its per-
formance may degrade considerably in situations character-
ized by small sample sizes (low V) or by close hypotheses
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(low cross-correlations under ;). It is well known that un-

der these situations other tests can significantly outperform

the GLRT. One popular choice is the Frobenius Norm Test,

which accepts the null hypothesis for sufficiently small val-

ues of

~ 2 1 ~
IHF - Mtr [Cﬁl} '

1
U3 M’

This test was proposed in [4] as an approximation of the
GLRT for low values of the cross-correlation coefficients un-
der H; (low SNR in signal detection applications), and was
recently shown to be the locally most powerful invariant test
(LMPIT) for the correlation detection problem [9].

All the above statistics can be seen as particular cases of
a broad class of random variables constructed from the eigen-
values of the sample coherence matrix (¢ M ,Atypically refeqed
to as linear spectral statistics (LSS). Let Ay < ... < Ay
denote the eigenvalues of the sample coherence matrix Cj;.
LSS as random variables that can be written in the form

= = mi:l 7 () @)

for a (generally complex) function f, well defined on the posi-
tive real axis. Obviously, the two statistics ﬁflLRT and 77F NT
are particular instances of LSS, since they can both be ex-
pressed as in (2) with f(z) = —logz for the GLRT and
f (2) = 22 for the Frobenius Norm Test.

The objective of this paper is to characterize the statistical
behavior of general LSS constructed from the eigenvalues of
the sample coherence matrix c M, 1.e. random variables that
are constructed as in (2) for some generic complex function
f(2). Tt should be pointed out that some particularizations
of this problem have been well studied in the literature, es-
pecially the GLRT statistic ﬁGLRT For example, it was re-
cently shown [10] that under the null hypothesis H§F#7 can
be represented as a product of independent beta-distributed
random variables, a fact that can be used to numerically com-
pute the threshold of the test to guarantee a certain probabil-
ity of false alarm. Apart from this work, the vast majority
of published work relies on classical large sample size ap-
proximations, assuming N — oo for fixed M. For exam-
ple, the asymptotic distribution of nGLRT was established in
[11, 12, 13], whereas the power of the test was extensively
studied in [12, 13], in both cases under large sample size as-
ymptotics.

These classical asymptotic studies are accurate for mod-
erately high sample volume N and relatively low observation
dimension M. However, it is well known [14] that when M
becomes large and tends to be comparable in magnitude to
the sample size IV, classical asymptotic approximations are
no longer valid. For this reason, in this paper we propose
to assume that both M and N are large but comparable in
magnitude. In mathematical terms, we will assume that both
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M, N — oo in a way that, if we define ¢cjy = M/N,
0 < liminf (epr) < limsup (epr) < o0. 3

We will first study the almost sure asymptotic behavior of the
LSS in (2), and then we will characterize the asymptotic fluc-
tuations of these statistics by establishing a central limit the-
orem.

2. CONVERGENCE OF THE LSS

We will make the following technical assumptions:

(Asl) The set of M-dimensional complex observations
Yn,n = 1,..., N, are i.i.d. random vectors distributed ac-
cording to a complex circularly symmetric Gaussian law of
zero mean and covariance R ;.

(As2) The observation dimension M is a function of N
and (3) holds.

(As3) If Apin (Ras) and Apax (Ras) denote the mini-
mum and maximum eigenvalues of the Hermitian matrix R/,
SUP 37 Amax (Ras) < oo and! inf pr Ain (Ras) > 0.

To study the asymptotic behavior of the LSS under the
above assumptions, we will consider the Stieljtes transform of
the empirical eigenvalue distribution of ¢ . This is a com-
plex function defined for z € C* (upper complex semiplane)
as

mM(z):%tr{(CM—zIM) ] =

m= 1

Using the results in [15] one can show thatﬂfor, all M, N suf-
ficiently high, all the positive eigenvalues Cj; are located in-
side the interval S = (5‘1, s) with probability one, where

L+ y/em)” Amax (R
s=sup( Vo )2 . M)'
M (]_ — \/C]\,[) /\min (RJ\I)

Using this fact, one can analytically extend the definition of
mar(z) to C\SU {0} for all large M, N using the Schwarz
reflection principle [16]. Now, let C~ denote a clockwise ori-
ented simple contour that encloses S and only intersects R
By simple application of the Cauchy integral formula, we can
express the LSS in (2) as

1
2mj Je-

v = f(z)ma (2)dz

almost surely for all large M, N (so that all the eigenvalues
are enclosed by C). Consequently, we can essentially inves-
tigate the asymptotic behavior of 7, by studying the asymp-
totic behavior of s (z). The following result establishes
almost sure convergence of this function in C*. The proof
can be established following the arguments in e.g. [17] and is
therefore omitted.

'n fact, only the first condition (bounded spectral norm) is needed for
Theorem 1.



Theorem 1. Under (Asl) — (As3), | (z) — mam(2)| —
0 almost surely for all z € CT as M, N — oo, where
N-M N 1

Mz M wyy (2)
with wys (2) denoting the unique solution in C* to the follow-
ing polynomial equation in w

’ﬁ‘LM(Z) =

zzw(l—%tr [CM (CM—WIM)*D @)

and Cp; = DX;”RMDX/[I/Z being the true coherence ma-
trix.

By comparing this result with the analogous convergence
for the sample covariance matrix [17], one can conclude that
the asymptotic behavior of the eigenvalues of Cu essentially
coincides with that of the elgenvalues of D,, % QRMD_I/ 2,
In other words, one can replace D m by Dy in the definition
of C; without affecting the global asymptotic behavior of its
eigenvalues.

This result can now be used in order to establish the al-
most sure convergence of 7, as defined in (2). We will as-
sume that:

(As4) The complex function f(z) is holomorphic on an
open subset including S.

By analytically extending mas(z) and wys (2) to the
whole C\SU {0} with the Schwarz reflexion principle and
using the dominated convergence theorem, one can see that
under (Asl) — (As4), | — 7ia| — 0 where

1

v =—¢ f(2)mu(z)dz.

i b ®)

For some practical values of f(z), this integral can be com-
puted in closed form by a simple change of variable. More
specifically, using the integration technique developed in [18]
one can show that

M

F.

~FNT

M [C?u} +

1
= —tr

M
whereas, assuming inf (N/M) > 1,

-1 N-M N
~GLRT _ _
Naf logdetCMJrl % log <N—]\/[)'

Observe that the situation here is radically different from
the classical asymptotic case (N — oo for fixed M), where

AT and HENT are consistent estimators of

— log det Cps and — tr [02 ]

respectively. When we allow the observation dimension M
to increase with the sample size, these two estimators be-
come clearly inconsistent. The asymptotic bias terms disap-
pear when ¢y — 0, agreeing with the fact that 7y, — nas
when N — oo for a fixed M. We next provide a more inter-
esting result that characterizes the asymptotic fluctuations of
7 around 7,7 in this asymptotic regime.
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3. ASYMPTOTIC FLUCTUATIONS OF THE LSS

In this section, we will establish a central limit theorem on
LSS constructed from the eigenvalues of ¢ - In order to in-
troduce this result, we need to define some complex functions
that are related to the asymptotic mean and variance of the
LSS. To simplify the notation, we will drop here the depen-
dence on M in all matrices. Let us define

pr (@) = %tr [C (C—wI)" (c (C—wl)” )]
- z% tr [02 (C—wl)2dg (c (= wI)‘l)}

tugu[(cC-w?ec) ((C-wn o C)]

and
0-]2\4 (UJI;WQ) = % tr [CA (wl) CA (WQ)} +
* m - %tr [02 (C—w D)~ (c—ng)—ﬂ

where A (w) = (C—wI) 2 — dg (C (waI)’z).
Theorem 2. Let piy; and O’?\/I be defined as

e = 5 @ )

2w Je ©)

o3 = % jél (w1) F(w2)o3; (wi,ws) dwidws  (7)
where the functions pyr (w) and 02, (wi,ws) are specified
above, C, is a contour obtained as C, = wy (C), and
where F(w) is equal to f(z) after replacing z with the
right hand side of (4). Assume that sup, |pp| < oo and
that 0 < infM|a§/I‘ < supy, |‘712\4| < oo. Then, under
(Asl) — (As4),
c

ot (M (fing — ar) — (8)

where 1y is defined in (5).

This result can be proven by following the approach es-
tablished in [19] (we omit the details here due to space con-
straints). We can particularize this theorem to the two statis-
tics that are of interest here, by simply carrying out the in-
tegrals in (6)-(7) and then checking that these quantities are
bounded according to the statement of the Theorem 2. We
summarize the results in the following corollary:

Corollary 1. Under (Asl) — (As4), the convergence in (8)
holds for i} NT by respectively replacing pay and a2, by

FNT
-1
M N r

1 2
O%/I,FNT =2 (Ntr [02]>

a1 [C (O dg (C7) O [C — dg (C)]).

(cooy] - 2% tr[C?] and



If, in addition, inf N/M > 1, then (8) also holds for ﬁflLRT
by respectively replacing pip; and o3, by
pGLRT — 7%% and
N M 1

UJQ\J,GLRT = IOg <m> — 2F + N tr [02] .

According to this corollary, under either one of the two
hypotheses, both the GLRT and the Frobenius Norm Test
statistics asymptotically fluctuate around 7y, like a Gaussian
random variable, with mean and variance given by the above
expressions. Hence, in practical applications one might ap-
proximate the asymptotic law of 7, under both hypothesis
as Gaussian random variable N (7as + pns /M, 03, /M?),
where the actual form of 7y, 1137 and o3, will depend on the
test and the considered hypothesis. We will next see that this
provides a very good approximation of the statistics when
both M, N are large.

4. NUMERICAL RESULTS

We considered here a scenario with a variable number of sen-
sors that collected complex Gaussian signals as described in
(As1). We adopted here the simulation setting in [9], where
the true covariance matrix was fixed to the identity under H,,
andto Ry, = F MAFf/I under the alternative H1, where F
is the M x M Fourier matrix and A is a diagonal matrix that
contains uniformly distributed values between 0.5 and 1.5.
A total of 10° independent realizations of the two statistics
ASEET and HENT were obtained for each hypothesis.

Figure 1 compares the simulated and asymptotic false
alarm and detection probabilities for different values of M, N
under both H( and H;. First of all, we observe that the as-
ymptotic distribution of the two statistics provides an accurate
description of the actual performance for a wide range of val-
ues of M, N, even in situations where M, N are comparable
in magnitude. On the other hand, it can be noticed that the
Frobenius norm test provides uniformly better performance
than the GLRT. This can also be illustrated in Figure 2, which
compares the empirical and the asymptotic Receiver Oper-
ating Characteristic (ROC) of the two statistics curves for
different values of M, N. Here again, we see that the asymp-
totic curves obtained with the proposed approximations are
quite close to the empirical ones, although a higher degree of
accuracy is obtained for the GLRT case.

5. CONCLUSIONS

This paper has presented an asymptotic analysis of LSS of the
sample coherence matrix. It has been shown that the global
asymptotic behavior of the eigenvalues essentially coincides
with that of a sample covariance matrix constructed from ob-
servations that are correlated according to the true coherence
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matrix. This result has been used to establish the almost sure
convergence of general LSS, and in particular the statistics
of the GLRT and the LMPIT for the correlation test prob-
lem. A central limit theorem has been presented that estab-
lishes the Gaussianity of the fluctuations of these LSS around
their asymptotic equivalents. Simulations for the GLRT and
LMPIT statistics indicate that the proposed asymptotic de-
scription provides a accurate approximation even in situations
where the sample volume is comparable to the observation di-
mension.
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Fig. 1. Asymptotic and simulated probabilities of false alarm
and detection for the GLRT (upper plot) and the FNT (lower
plot) as a function of the threshold a.
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Fig. 2. Simulated vs. asymptotic ROC curves for different
values of M, N. The Gaussian approximation tends to be
more accurate for the GLRT than for the Frobenius norm test
for moderate values of M, V.
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