
HIGHER-DIMENSIONAL COHERENCE OF SUBSPACES

Stephen D. Howard 1 Songsri Sirianunpiboon1 Douglas Cochran2

1Defence Science and Technology Organisation
PO Box 1500, Edinburgh 5111, Australia

2School of Mathematical and Statistical Sciences
Arizona State University, Tempe AZ 85287-5706 USA

ABSTRACT

A measure of the smallest angle between two p-dimensional
subspaces of a higher-dimensional vector space is introduced.
This p-coherence is seen to generalize standard measures of
coherence, and its relationship to canonical correlation is
noted. The use of p-coherence as a test statistic for the pres-
ence of a common p-dimensional signal subspace in data
collected by two arrays of K > p sensors is proposed.

Index Terms— Multi-channel detection; Coherence;
Canonical correlation; Exterior algebra

1. INTRODUCTION

Geometric ideas have played important roles in statistical signal
processing, particularly in connection with invariances arising from
symmetries of probability distributions and with relationships be-
tween subspaces spanned by vectors in an ambient linear space.
Geometric reasoning is often involved in deriving statistical tests
and estimators corresponding to optimality or other standard cri-
teria (e.g., maximum likelihood). In fact, geometric insight has
sometimes led to effective schemes for detection, estimation, and
other typical statistical signal processing objectives in advance of
the derivation of such tests. One such case is generalized coherence
[1, 2], which was introduced in 1988 specifically in connection with
the problem of detecting the presence of a common but unknown
signal in noisy data collected at multiple sensors. The geometrical
nature of the test statistic, essentially the determinant of a Gram
matrix formed from the data vectors, provided heuristic justification
for its use. And the availability of its distribution under specific H0

assumptions allowed determination of thresholds corresponding to
desired false alarm probabilities in Neyman-Pearson type testing. It
was only sometime later that the GC statistic was identified as the
solution to precisely formulated statistical testing problems [3].

This paper introduces a geometrically motivated statistic for
problems in which it is desirable to determine from noisy data
whether the respective spans of two collections of vectors in a high-
dimensional space share a common subspace. Investigation of such
situations is motivated by the increasing prevalence of MIMO archi-
tectures in RF sensing and communications systems. Consider, for
example, a scenario in which a transmit array emits a rank-P signal
which is received at two geographically separated receiver arrays. In
addition to this rank-P signal, each receiver array receives signals
from local sources that are too weak to have discernible effect on the
other receiver array. To ascertain the presence of a common signal

at the two receiver arrays and also its rank, which is a valuable sig-
nature of the emitter, a test for a common subspace in the channels
of noisy received data from the two sensor arrays is warranted.

The work here contributes to an active circle of research on
multi-sensor detection and estimation of signals in which rank is
known or is to be estimated from data collected at multiple sensors;
e.g., [4, 5, 6, 7, 8, 9].

2. MODEL AND PROBLEM FORMULATION

The approach introduced here to identify a common p-dimensional
subspace in the spans of two sets of vectors is based on the fol-
lowing geometric formulation. Consider two sets of complex N -
vectors, each set containing K < N vectors. Denote these by
CX = {x1, · · · ,xK} and CY = {y1, · · · ,yK} and assume that
each set has been separately orthonormalized. The question to be
addressed is whether the respective spans VX of CX and VY of CY
contain a common subspace of dimension p ≥ 1.

Denote by GX the K ×K Gram matrix for the set CX ; i.e.,

[GX ]nm = 〈xn,xm〉

where 〈·, ·〉 denotes the standard inner product on CN . Similarly,
denote the Gram matrix for CY by GY . Because of the orthonor-
mality assumption, GX = GY = IK , the K × K identity matrix.
The geometric relationship between CX and CY is encoded in the
K×K cross Gram matrix [HXY ]nm = 〈xn,ym〉. In what follows,
the subscriptXY will be dropped fromH when no confusion arises.
Associate the matrix H with the corresponding (in the standard ba-
sis) linear map H : CK → CK . The generalized coherence [1, 2] of
the combined set of unit vectors CX ∪ CY is

γ2
1(CX ∪ CY ) = 1− |G(CX ∪ CY )|

= 1−
∣∣∣∣IK H
H† IK

∣∣∣∣
= 1−

∣∣∣IK −HH†∣∣∣ .
(1)

This quantity describes a relationship between the subspaces VX
and VY that does not depend explicitly on the sets CX and CY ,
hence it makes sense to denote γ2

1(VX , VY ) = γ2
1(CX ∪ CY ). The

cosines of the principal angles {θ1, · · · , θK} between VX and VY
are the singular values of HXY , so the eigenvalues of HXYH†XY
are {cos2 θ1, · · · , cos2 θK}. Thus,

γ2
1(VX , VY ) = 1−

K∏
j=1

(1− cos2 θj).
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Perfect coherence (i.e., γ2
1(VX , VY ) = 1) is obtained if any θj is

zero; i.e., if VX and VY share a one-dimensional subspace.

3. EXTERIOR POWERS OF A VECTOR SPACE

Higher order coherence of vector subspaces is most naturally defined
in terms of exterior algebra and particularly, in terms of the exterior
powers of a vector space [10]. Let V be a vector space of dimension
N with inner product 〈 , 〉. The pth exterior power of V , denoted by∧p V is a subspace of V ⊗p which is spanned by the antisymmetric
tensors

z1 ∧ · · · ∧ zp =
1

p!

∑
σ

sgn(σ) zσ(1) ⊗ zσ(2) ⊗ · · · ⊗ zσ(p).

In this expression, z1, · · · zp ∈ V and the sum is over all permuta-
tions of {1, · · · , p}. The elements of

∧p V are called p-vectors. De-
fine the set S(p,N) of all p-element strictly increasing sequences se-
lected from {1, · · · , N} and suppose {e1, . . . , eN} is an orthonor-
mal basis for V . For each element I = i1, · · · , ip ∈ S(p,N), define
the p-vector

eI = ei1 ∧ · · · ∧ eip .

Then the set {eI |I ∈ S(p,N)} is a basis for
∧p V .

A p-vector that can be written as the exterior product of p ele-
ments of V as z1 ∧ · · · ∧ zp is called pure. The space

∧p V has an
inner product induced by the inner product on V . It is obtained by
defining

〈z1∧ · · · ∧ zp,w1 ∧ · · · ∧wp〉p

=
∣∣[〈zi,wj〉]1≤i,j≤p

∣∣ =
∣∣∣∣∣∣∣
〈z1,w1〉 · · · 〈z1,wp〉

...
. . .

...
〈zp,w1〉 · · · 〈zp,wp〉

∣∣∣∣∣∣∣
for pure p-vectors and extending to all of

∧p V by linearity. In terms
of this inner product, the basis {eI |I ∈ S(p,N)} is orthonormal.

Some insight into the nature of pure p-vectors is obtained by
considering the matrix Z whose ith row consists of components of zi
in the basis {ej |j = 1, · · · , N} for V . The expansion of z1∧· · ·∧zp
in the basis {eI |I ∈ S(p,N)} is given by

z1 ∧ · · · ∧ zp =
∑

I∈S(p,N)

ZIeI

where the ZI are the principal minors of Z; i.e.,

ZI =

∣∣∣∣∣∣∣∣∣
z1,i1 z1,i2 . . . z1,ip
z2,i1 z2,i2 . . . z2,ip

...
...

...
zp,i1 zp,i2 . . . zp,ip

∣∣∣∣∣∣∣∣∣ .
In defining p-coherence of subspaces, it will also be necessary

to use the concept of exterior powers of linear maps. Suppose that
A : V → V is a linear map. A map ∧pA :

∧p V → ∧p V can be
defined through its action on pure p-vectors as

∧pA (z1 ∧ · · · ∧ zp) = Az1 ∧ · · · ∧Azp.

In the basis {eI |I ∈ S(p,N)}, ∧pA has matrix elements

〈eI ,∧pA eJ〉p =

∣∣∣∣∣∣∣∣∣
Ai1,j1 Ai1,j2 . . . Ai1,jp
Ai2,j1 Ai2,j2 . . . Ai2,jp

...
...

...
Aip,j1 Aip,j2 . . . Aip,jp

∣∣∣∣∣∣∣∣∣

which are the (I, J)th minors of the matrix for A. For two linear
maps A,B : V → V , the exterior power has the property that

∧p(AB) = (∧pA)(∧pB).

An important property of pure p-vectors is their relationship to
p-dimensional subspaces of V [10, 11]. Let {z1, . . . , zp} be a lin-
early independent set of p-vectors in V . These vectors form a basis
for a subspace VZ ⊂ V . If B is any non-singular matrix, then the
vectors

z′k =

p∑
j=1

Bijzj (2)

are also a basis for VZ . Associated with {z1, . . . , zp} is the p-vector
ζ = z1 ∧ · · · ∧ zp. Under the change of basis (2),

ζ′ = z′1 ∧ · · · ∧ z′p = |B|ζ.

Thus the subspace VZ is associated with a ray in
∧p V in the direc-

tion ζ; i.e., {αζ | α ∈ C}. In general there is a bijection between
p-dimensional subspaces of V and rays in

∧p V in the direction of
pure p-vectors. Given two pure p-vectors ζ = z1 ∧ · · · ∧ zp and
ω = w1 ∧ · · · ∧ wp then in terms of the inner product 〈 , 〉p, the
angle between the subspaces associated with these p-vectors is

cos θ =
|〈ζ,ω〉p|√

〈ζ, ζ〉p
√
〈ω,ω〉p

.

It is obviously invariant under change of basis for either of the sub-
spaces. This angle between p-dimensional subspaces is related to
the principal angles θ1, · · · , θp between the subspaces by

cos θ =

p∏
j=1

cos θj .

This is proven in [12] and is a special case of Theorem 1 below.

4. THE p-COHERENCE OF SUBSPACES

Consider again the sets CX and CY from Section 2. Define a set
CpX ⊂

∧p V by

CpX = {xI = xi1 ∧ · · · ∧ xip |I ∈ S(p,K)}.

The elements of CpX span the subspace
∧p VX ⊂ ∧p V . Similarly

define CpY and
∧p VY from CY . The cross Gram matrix between

CpX and CpY is given by

[Hp
XY ]I,J = 〈xI ,yJ〉p, for I, J ∈ S(p,K).

Note that HXY is a linear map CK → CK and that HP
XY is a linear

map
∧p CK → ∧p CK . In fact, it can be seen that

Hp
XY = ∧pHXY .

With this notation, it is now possible to define pth order co-
herence between K-dimensional subspaces VX and VY of an N -
dimensional complex vector space V as follows.

Definition 1. Let V be an N -dimensional vector space over C.
The pth order coherence (p-coherence) between two K-dimensional
(K < N ) subspaces VX and VY of V is

γ2
p(VX , VY ) = γ2

1

(∧pVX ,∧p VY ).
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Applying (1) to this definition gives

γ2
p(VX .VY ) = 1− |G(CpX ∪ C

p
Y )|

= 1−

∣∣∣∣∣ I(Kp ) ∧pH
(∧pH)† I(Kp )

∣∣∣∣∣
= 1−

∣∣∣∣I(Kp ) − ∧p (HH†)
∣∣∣∣ .

This expression for γ2
p(VX , VY ) leads to the following result:

Theorem 1. The p-coherence of two K-dimensional subspaces VX
and VY of an N -dimensional (N > K) complex vector space V is
given by

γ2
p(VX , VY ) = 1−

∏
I∈S(p,K)

(1−
∏
i∈I

cos2 θi)

where the θi, i = 1, · · · ,K, are the principal angles between VX
and VY .

Corollary 1. Perfect p-coherence, γ2
p(VX , VY ) = 1, occurs only if

VX and VY share a p-dimensional subspace.

Proof. Theorem 1 follows from the fact that, if a linear map
A : CK → CK has (right) eigenvectors {w1, · · · ,wK} with
corresponding eigenvalues {λ1, · · · , λK}, then the map ∧pA :∧p CK → ∧p CK has (right) eigenvectors

{wI = wi1 ∧ · · · ∧wip |I ∈ S(p,K)}

with corresponding eigenvalues

{λI = λi1 · · ·λip |I ∈ S(p,K)}. (3)

Incidentally, the form of the eigenvalues of ∧pA in (3) implies
the useful relation

| ∧pA| = |A|(
K−1
p−1 ). (4)

The p-coherence has so far been defined for a pair of subspaces.
The p-coherence can be generalized in the following way. Suppose
there are L sets CX1 , CX2 , · · · , CXL each consisting of K vectors
in V . Associated with each CXj there is a subspace VXj spanned
by the vectors in CXj . The p-coherence for VX1 , VX2 , · · · , VXL is
defined as

γ2
p(VX1 , · · · , VXL) = 1− |G(CpX1

∪ CpX2
∪ · · · ∪ CpXL

)|

This multi-subspace p-coherence will be considered in detail in fu-
ture work. The remainder of this paper considers only coherence for
pairs of vector spaces.

5. RELATIONSHIP TO CANONICAL CORRELATIONS

Let H be the Hilbert space of complex-valued random variables on
some probability space. The inner product between two random vari-
ables X and Y inH is

〈X,Y 〉 = E{X∗Y } (5)

Consider two sets of K zero-mean random variables CX =
{X1, · · · , XK} and CY = {Y1, · · · , YK}. Associated with the
sets CX and CY are the subspaces VX and VY of H consisting

of the linear spans of the set of random variables. The canoni-
cal correlation coefficients [13] between CX and CY , denoted by
ρj , j = 1, · · · ,K, are the singular values of R−1/2

XX RXYR
−1/2
Y Y ,

where RXX and RY Y are the covariance matrices of X and Y ,
respectively, and RXY denotes their cross-covariance matrix. The
canonical correlation coefficients are actually the cosines of the
principal angles between the subspaces VX and VY with respect to
the inner product (5). The coherence between two subspaces VX
and VY ofH is defined by

γ2
1(VX , VY ) = 1−

∣∣∣∣RXX RXY
R†XY RY Y

∣∣∣∣
|RXX ||RY Y |

and the p-coherence between VX and VY is defined as

γ2
p(VX , VY ) = γ1

( p∧
VX ,

p∧
VY
)2

= 1−

∣∣∣∣∧pRXX ∧pRXY
∧pR†XY ∧pRY Y

∣∣∣∣
| ∧pRXX || ∧pRY Y |

.

In a manner similar to the proof of Theorem 1, it can be shown that

γ2
p(VX , VY )

= 1−
∣∣∣∣I(Kp ) − ∧p (R−1/2

XX RXYR
−1
Y YR

†
XYR

−1/2
XX

)∣∣∣∣
= 1−

∏
I∈S(p,K)

(1−
∏
i∈I

ρi).

6. DISTRIBUTION OF SOME STATISTICS UNDER THE
NULL HYPOTHESIS

In using γ2
p to detect the presence of higher-order correlation be-

tween two data sets CX and CY , it is advantageous to know the dis-
tribution of the p-coherence statistic under suitable null hypotheses.
This section provides preliminary results in this direction.

The vectors in each of the sets CX and CY are assume to have
been orthonormalized and so comprise a set of K orthonormal vec-
tors in V . Such a set is known as a K-frame, and the collection of
all K-frames in V defines a smooth manifold VK(V ) of complex
dimension 2 dim(V )K −K2 called a Stiefel manifold [14]. A suit-
able null hypothesis is that each of the sets is a uniformly distributed
K-frame, according to the invariant measure on VK(V ), and that the
two K-frames are independently distributed. This will be the case if
each of the vectors in CX and CY are independently drawn from the
complex gaussian distribution CN (0, IN ) and the vectors in each of
CX and CY separately orthonormalized.

Under this null hypothesis, the quantity

Q = HXYH
†
XY ∼ BK(K,N −K)

is matrix beta distributed. Note that (I − Q) ∼ BK(N − K,K).
Factorize Q as Q = T †T , where T is upper triangular with positive
diagonal entries. Adapting Theorem 3.3.3 in [15] (See [16]) to the
complex case implies that the squares of the diagonal entries τj =
t2jj , j = 1, · · · ,K, of T are independently beta distributed with
τj ∼ B(N −K − j + 1,K). Thus

|HXYH†XY | ∼
K∏
j=1

τj (6)

5676



where τj ∼ B(N −K − j + 1,K), for j = 1, · · · ,K. In a similar
way

γ2
1 = 1− |I −Q| ∼ 1−

K∏
j=1

βj

where βj ∼ B(K−j+1, N−K), for j = 1, · · · ,K, independently.
This result also follows in a direct way from [17].

A useful result in analyzing p-coherence statistics is the follow-
ing.

Theorem 2. Let CX and CY consist of independent uniformly dis-
tributed K-frames in VK(V ), and let HXY be the cross Gram ma-
trix ofCX andCY . The distribution of the determinant |

∧p(HXYH†XY )|
is given by

| ∧p (HXYH†XY )| ∼
K∏
j=1

τ
(K−1
p−1 )

j

where the βj are independently beta distributed as βj ∼ B(N −
K − j + 1,K), for j = 1, · · · ,K.

Proof. Using (4),

| ∧p (HXYH†XY )| = |HXYH
†
XY |

(K−1
p−1 ) ∼

K∏
j=1

τ
(K−1
p−1 )

j

where τj ∼ B(N −K − j + 1,K), for j = 1, · · · ,K according to
(6).

Theorem 2 implies that

γ2
K ∼ 1−

K∏
j=1

τj

where τj ∼ B(N −K − j + 1,K), for j = 1, · · · ,K. The distri-
butions of γ2

p for 1 < p < K, under the null hypothesis remain to
be determined.

7. NUMERICAL RESULTS

This section evaluates the performance of the detection statistics
given in γ2

p by means of simulations.
Consider a scenario in which two sets of K = 4 channels are

monitored and N = 128 or N = 256 samples per channel are
collected. The distribution of γ2

p under the null hypothesis was in-
vestigated by drawing each N -sample vector independently from a
CN (0, IN ) distribution. Over 5 × 106 realizations, the values of
γ2
p for p = 1, 2, 3, and 4 were collected. The resulting measured

cumulative distributions for N = 128 are displayed in Figure 1.
Three scenarios where used in testing performance of p-

coherence as a detection statistic. These were

Rank-0 For each realization, each N -sample vector is independently
realized from a CN (0, IN ) distribution

Rank-1 A single non-zero (0.2) canonical correlation is introduced
between the two sets of channels

Rank-2 Two non-zero (0.2, 0.3) canonical correlations are introduced
between the two sets of channels

The performance of the detector was evaluated for two cases: rank-2
against rank-0 and rank-2 against rank-1. Figure 2 shows the corre-
sponding receiver operating characteristic (ROC) curves for proba-
bility of correct detection of rank-2 against probability of false alarm
when testing rank-2 against rank-0, and rank-2 tested against rank-1.
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Fig. 1. Cumulative distribution for 1, 2, 3 and 4-coherence under the
null hypothesis.
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Fig. 2. ROC for two sets of 4 receivers, N = 128 and 256, p = 1
with cos θ1 = 0.2 and p = 2 with cos θ1 = 0.2 and cos θ2 = 0.3.

8. CONCLUSION

This paper has introduced p-coherence and examined some of the
properties and relationships to standard concepts in statistical signal
processing. Its use as a multiple-channel detection statistic has been
proposed, some preliminary results regarding its distribution under a
suitable null hypothesis has been given, and simulations support its
potential applicability in certain scenarios. But much more complete
examination of p-coherence as a detection statistic is warranted.
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