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ABSTRACT

Linear image deconvolution for radio–astronomy is an ill–posed

problem. For this reason, a-priori knowledge is crucial for improv-

ing the performance of the deconvolution. In this paper we show

that combining non–negativity constraints with an upper bound on

the magnitude of each pixel in the image can significantly improve

the image formation algorithm. We also show that the minimum

variance distortionless response (MVDR) dirty image provides the

tightest upper bound out of all beamformers. We then show how

the LS-MVI image formation algorithm can be reformulated as a

preconditioned weighted least squares algorithm. The resulting al-

gorithm can be efficiently solved using the active–set method. The

performance of the algorithm is demonstrated in simulation and

compared with constrained least squares based on the classical dirty

image.

Index Terms— Radio astronomy, array signal processing, con-

strained optimization, Krylov subspace, LSQR, MVDR, image de-

convolution

1. INTRODUCTION

Since the early days of radio astronomy, many deconvolution tech-

niques have been developed to solve the image formation problem.

The basic idea behind a deconvolution algorithm is to exploit a-priori

knowledge about the image in order to solve the ill-posed imaging

problem. The first algorithm and the most popular of these tech-

niques is the CLEAN method proposed by Högbom [1]. Subse-

quently the maximum entropy algorithm (MEM) with various en-

tropy functions was proposed in [2], [3], [4] and [5] and the current

implementation by Cornwell and Evans [6] is the most widely used.

Beyond these two techniques there are several extensions in various

directions: extensions of the CLEAN algorithm to support multi-

resolution and wavelets as well as non co-planar arrays and multiple

wavelengths such as the W-projection [7] and the A-projection al-

gorithm (see the overview paper [8]). MEM techniques have also

been extended to take into account source structure through the use

of multiresolution and wavelet based techniques [9]. Other decon-

volution techniques have also been proposed, such as global non-

negative least squares proposed by Briggs [10], matrix based para-

metric imaging such as the Least Squares Minimum Variance Imag-

ing (LS-MVI), maximum likelihood based techniques in [11], [12],

[13] and sparse L1 reconstruction in [14] and [15]. Source modeling

is an important issue and various techniques to improve modeling
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over simple point source models by using shapelets, wavelets and

Gaussians [16] have been implemented. A more extensive overview

of classical techniques and implementation issues is given in [17] or

[18].

Better performance analysis of imaging as well as the develop-

ment of computationally efficient techniques are some of the major

challenges for the radio astronomical signal and image processing

community. This is likely to become a more critical problem for

the new generation of radio interferometers that are recently built

or will be built in the next two decades such as the Square Kilo-

meter Array (SKA) and its prototypes, the Low Frequency Array

(LOFAR), the Allen Telescope Array (ATA), Murchison Widefield

Array (MWA) and the Long Wavelength Array (LWA). These radio-

telescopes are composed of many stations (each station is made up

of multiple antennas that are combined using adaptive beamform-

ing). They will have significantly increased sensitivity and band-

width compared to traditional radio interferometers, and some of

them will operate at much lower frequencies. Improved sensitivity

will therefore require much better calibration, the capability to per-

form imaging with much higher dynamic range in order to reduce

the effect of the residuals of powerful foreground sources inside and

outside the field of view and better handling of non-coplanar arrays.

Unlike non-linear deconvolution techniques, least squares based

techniques offer a computationally efficient closed form approach

[19]. Unfortunately, the deconvolution problem becomes ill-posed

as the resolution increases [19]. To overcome this problem, a non-

negativity constraint has been proposed using the non-negative least

squares algorithm (NNLS) [20]. In order to benefit from the vast lit-

erature related to solving least square problems on one hand, and to

benefit from the non-linear processing offered by standard deconvo-

lution techniques on the other, we propose reformulating the imaging

problem using an active-set approach with two additional constraints

as well as low-dimensional fine fitting of the parameters. We gener-

alize several of the sequential parametric techniques into an active-

set weighted least squares algorithm [21] with weighting derived to

allow the introduction of high resolution techniques such as the LS-

MVI ([12]). This reformulation will allow us to obtain computation-

ally efficient imaging algorithms that are closely related to existing

non-linear sequential source estimation techniques with the advan-

tages of accelerated convergence due to tighter upper bounds on the

power distribution over the complete image. Using the Karush Kuhn

Tucker (KKT), total power constraint is enforced over the complete

image not only at the location of the source. This in turn eliminates

the inclusion of negative flux sources and other anomalies that ap-

pear in some existing sequential techniques. Specifically, we show

that the pixel values are bounded from above by the minimum vari-

ance distortionless response (MVDR) dirty image [11] and then we

extend the idea behind NNLS and formulate the multichannel imag-

ing as an optimization problem with both lower and upper bounds.
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The structure of this paper is as follows: In section 2 we de-

scribe the basic data model. Section 3 describes the imaging algo-

rithm. The final sections presents simulated experiments comparing

the algorithm to previously proposed constrained least square algo-

rithm [22]. We discuss possible extensions in the concluding section.

Due to space limitations, the implementation details of the active-set

technique as well as the comparison of the algorithm to other algo-

rithms on real data will appear in the full version of this paper [23].

2. DATA MODEL

Assume that a radio telescope with p receivers (antennas or stations)

is observing the sky. In this paper we use the data model proposed

by Leshem et al. [11], [24]. For simplicity we assume a single fre-

quency measurement and the generalization to multi-frequency syn-

thesis follows the model in [11]. To distinguish between the true

(and unknown) position of the sources and the position of each pixel

in the image we use the tilde to represent parameters that depend

on the true position of the sources. Because of the earth’s rotation

and the resolution of the telescope there is a short time duration for

which a source is spatially stationary, we call a measurement during

this time a snapshot. Following [11] we are given sample covari-

ance matrices (also known as the visibility) R̂k estimated from the

sampled output of the receivers at snapshots k = 1, ...,K. Since

the received signals and noise are Gaussian, these covariance matri-

ces form sufficient statistics for the imaging problem [11]. We also

define

r̂k = vect(R̂k), (1)

and by stacking these measurements in a vector we can form the total

measurement vector for the system which becomes

r̂ =
[

r̂T1 , . . . , r̂TK
]T

. (2)

The sample covariance matrices are noisy versions of the true

covariance matrices. These are composed of the sky contribution and

the noise covariance matrices. Following [24] the model covariance

matrices are given by:

Rk = E{yky
H
k } = ÃkΣ̃Ã

H
k +Rn,k, (3)

where Σ̃ = E{s̃s̃H} and Rn,k are the source and the noise covari-

ance matrices respectively and Ãk is the array response matrix. By

assuming that the sky sources are independent and stationary, we can

model Σ̃ = diag(σ̃) where

σ̃ =
[

σ̃1 , . . . , σ̃q

]T
(4)

represents the power of the sources. We will use the terms brightness

and source power interchangeably for the rest of this paper.

Vectorizing both sides of (3) we get

rk = vect(Rk) = (Ã∗
k ◦ Ãk)σ̃ + rn,k (5)

where rn,k = vect(Rn,k). Stacking the vectorized covariances for

all of snapshots together we obtain

r =
[

rT1 , ..., r
T
K

]T
= Ψ̃σ̃ + rn (6)

where Ψ̃ =

[

(

Ã∗
1 ◦ Ã1

)T

, ...,
(

Ã∗
K ◦ ÃK

)T
]T

and rn =

[

rT
n,1, ..., r

T
n,K

]T
. The imaging problem amounts to estimating

the locations and brightness of all the sky sources from the sample

covariance estimates R̂1, ..., R̂K . We also define the block diago-

nal matrices R = diag{R1, ...,RK} and R̂ = diag{R̂1, ..., R̂K}.

These will be used for computing the asymptotically optimal weight-

ing matrix for the weighted least squares algorithm.

3. THE IMAGE FORMATION AS A REGULARIZED

CONSTRAINED LEAST SQUARES ALGORITHM

The imaging problem aims to find the spatial power distribution

over the sky, given a set of covariance matrices at snapshots, k =
1, ...,K. We define a grid for the image and try to estimate the

power on the grid. Assuming that the grid is sufficiently fine, this

will provide a good estimate of the image. Therefore we replace Ã

with the array response matrix towards the grid pixels A and σ̃ with

σ in (3) and obtain

Rk = Akdiag(σ)AH
k +Rn,k. (7)

In this new model A is a p × M matrix and σ is a M × 1 vector,

where M is the number of pixels. Similarly Ψ̃ changes to

Ψ =
[

(A∗
1 ◦A1)

T , ..., (A∗
K ◦AK)T

]T
. (8)

Hence for a given r̂ in (2), we want to estimate the power of each

pixel. Note that A, Ψ and σ depend on the position of the pix-

els on the gridded image. The change of notation is to indicate the

difference between the pixel locations and the true (and unknown)

location of the sources.

Now that we have defined the grid, the imaging equation (6)

becomes

r = Ψσ + rn. (9)

For a sufficiently fine grid this approximates the solution of the dis-

crete source model. However, working entirely in the image domain

leads to a gridding related noise floor. This is solved by fine adapta-

tion of the location of the sources and estimating the true locations

in the visibility domain. We can now reformulate (9) as a Least

Squares (LS) estimate of σ as done in [19]. Solving the imaging

problem with LS reduces to the following minimization problem

min
σ

1

2K
‖r̂−Ψσ‖2. (10)

Unfortunately when the number of pixels is large the problem is ill-

posed and (9) has infinitely many solutions [19]. Therefore, solving

this problem requires some kind of regularization. Typically image

formation algorithms exploit external information regarding the im-

age in order to regularize the ill-posed problem. For example max-

imum entropy techniques [2, 3] impose a smoothness condition on

the image whereas the CLEAN algorithm [1] exploits the fact that

most of the image is empty. To regularize the problem we follow

[20] who required the non-negativity of every pixel in the image.

This leads to a lower bound σ ≥ 0. The NNLS problem can thus be

given as:

minσ

1

2K
‖r̂−Ψσ||2

subject to: 0 ≤ σ
(11)

We now improve the NNLS regularization by exploiting our knowl-

edge of the dirty image and finding an upper bound , γ, for the pixel

powers such that σ ≤ γ. We will provide the rationale and discuss

different choices for γ below.

By closer inspection of the ith pixel on the dirty image, we see

that for ith pixel we have

σw,i =
∑

k

w
H
i,kRkwi,k =

∑

k

w
H
i,kai,kσia

H
i wi,k+

∑

k

w
H
i,kRr,kwi,k

(12)

If we require that

w
H
i ai =

√
K (13)
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where

wi =
[

wT
i,1 . . . wT

i,K

]T
(14)

we obtain that

σw,i = σi +w
H
i Rrwi. (15)

Since Rr is the covariance matrix of noise and the rest of the sky, it

is per definition positive (semi-)definite, thus we always have:

σi ≤ σw,i. (16)

Following [25], the optimal beamforming vectors wi that satisfy

(13) and minimize the second term on the right hand side of (15),

are given by:

wi =

√
K

aH
i R−1ai

R
−1

ai. (17)

The dirty image formed by substituting (17) into (15) is called the

MVDR dirty image [12]. Each pixel of the MVDR dirty image is

given by

σMVDR,i =
1

1

K

∑

k a
H
i,kR

−1

k ai,k

. (18)

It is useful to write (18) in a vector form:

σMVDR = D
−1

MVDRΨ
H(R−T ⊗R

−1)r, (19)

where

DMVDR =
1

K
diag

2

(

A
H
R

−1
A
)

. (20)

By substituting this vector into (16) the upper bound becomes

σ ≤ σMVDR. (21)

Given the fact that wi minimizes the positive error in output of the

beamformer shows that the MVDR dirty image forms a very tight

upper bound on the power of each pixel. Using this as an additional

constraint can improve the speed of convergence and also the quality

of the solution. This improves the results of [22] which was based

on the classical dirty image. The constrained LS (CLS) imaging

problem can now be formulated as:

minσ

1

2K
‖r̂−Ψσ‖2

subject to: 0 ≤ σ ≤ γ
(22)

where γ can be chosen either as γ = σMF for the matched filter dirty

image or γ = σMVDR for the MVDR dirty image.

The upper bound (21) assumes that we know the true covariance

matrices Rk. However in practice we only measure R̂k which is

subject to statistical fluctuations. Choosing a confidence level of

6 times the standard deviation of the dirty images ensures that the

upper bound will hold with a probability of 99.9% for all the pixels

in an image of 1000× 1000 pixels. This leads to

σ ≤ α σ̂MVDR (23)

where

σ̂MVDR,i =
C

1

K

∑

k ai,kR̂
−1

k ai,k

(24)

is an unbiased estimate of the MVDR dirty image, and C = N/(N−
p) is a bias correction constant. The unbiased estimate can also be

written in vector form as

σ̂MVDR = D
−1

Ψ
H(R̂−T ⊗ R̂

−1)r̂, (25)

where

D =
1

KC
diag

2

(

A
H
R̂

−1
A
)

. (26)

It is well known that the statistical properties of a LS solution can

be improved in the Gaussian case by applying a proper weighting

which leads to a weighted least squares (WLS) problem [26]. The

proper weighting uses R−1. However, if R̂ is a consistent estimate

of R, using R̂ provides an asymptotically optimal weighting. This

leads to the cost function:

fWLS(σ) =
1

2
‖
(

R̂
−T/2 ⊗ R̂

−1/2
)

(r̂−Ψσ) ‖2 (27)

The WLS problem is now given by

minσ fWLS(σ)
subject to: 0 ≤ σ ≤ γ.

(28)

As we have shown in (10), the LS solution is related to the classical

(matched filter) dirty image. Similarly we can show that by defining

a diagonal preconditioner and applying it to the WLS we can relate

this new preconditioned WLS (PWLS) problem to the MVDR dirty

image. This will also allow us to understand the relation between the

WLS solution and the LS-MVI algorithm [12]. The diagonal precon-

ditioner with this property is given by (26). Now we can rewrite (27)

as

fWLS(σ) =
1

2
‖
(

R̂
−T/2 ⊗ R̂

−1/2
)

(

r̂−ΨD
−1

Dσ
)

‖2 (29)

Substituting σ̌ = Dσ we obtain that (28) is equivalent to solving

σ̌ = argminσ̌

1

2
‖
(

R̂−T/2 ⊗ R̂−1/2
)

(

r̂−ΨD−1
σ̌
)

‖2

subject to: 0 ≤ σ̌ ≤ Dγ

(30)

and setting σ = D−1
σ̌. This is correct since D is a positive diag-

onal matrix. The relation between this function and MVDR leads to

better detection and hence better estimation results when we solve

the constrained problem.

The problem (29) can be solved efficiently using an active-set

algorithm together with a Krylov subspace based technique. These

issues will be discussed in the full version of this paper [23].
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Fig. 1: True source

4. SIMULATIONS

In this section we evaluate the performance of the proposed method

on a simulated image. An array of 100 dipoles (p = 100) with

random distribution is used. Three frequency channels each with

a bandwidth of 195 kHz and two snapshots (K=2) were used. The

simulated source is a combination of a strong point source and two

extended structures. Each of the extended sources is composed

of seven Gaussian shaped sources, one in the middle and 6 on a
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Fig. 2: MF Dirty Image
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Fig. 3: Solution of the constrained LS image after convolution with

a Gaussian beam.
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Fig. 4: Constrained LS image cross section.
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Fig. 5: MVDR Dirty Image.

hexagon around it. Figure 1 shows the simulated image in dB scale.

The background noise level that is added is 10 dB below the ex-

tended sources. Figures 2 and 5 show the matched filter and MVDR
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Fig. 6: Preconditioned WLS Image after convolution with a Gaus-

sian beam.
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Fig. 7: MVDR dirty image and preconditioned WLS crosssection.

dirty images respectively. Figures 3 and 6 show the reconstructed

images, after deconvolution and smoothing with a Gaussian clean

beam, for the LS and MVDR deconvolution with MF and MVDR

dirty images as upper bounds respectively. A cross section of the

images is illustrated in Figures 4 and 7. Remarks:

• As expected MVDR dirty image has a much better dynamic

range and lower side–lobes;

• Due to better initial dirty image and upper bound the precon-

ditioned WLS deconvolution yields a better cleaned image.

However there is a trade off between the resolution of the

point source and correct shape of the extended sources when

we use the Gaussian beam to smooth the image.

• The cross sections show the accuracy of the magnitudes. This

demonstrates that not only the shape but also the magnitude of

the sources are better estimated using preconditioned WLS.

5. CONCLUSION

In this paper we provided an improved constrained least squares

(CLS) image formation algorithm. We have demonstrated its supe-

riority over previously proposed CLS algorithms in a simulated ex-

periments. The full version of this paper [23] will provide examples

for the simulated 3C catalog as well as measured data. It will also

provide the full implementation of the algorithm which is computa-

tionally simple but requires careful use of Krylov spaces to prevent

the need to store very large matrices. Future work will show how

to combine the proposed approach with the robust adaptive selective

sidelobe canceler [27].
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