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ABSTRACT

The Square Kilometre Array (SKA) will form the largest radio tele-
scope ever built and such a huge instrument in the desert poses enor-
mous engineering and logistic challenges. Algorithmic and architec-
tural breakthroughs are needed.

Data is collected and processed in groups of antennas before
transport for central processing. This processing includes beam-
forming, primarily so as to reduce the amount of data sent. The
principal existing technique points to a region of interest indepen-
dently of the sky model and how the other stations beamform.

We propose a new collaborative beamforming algorithm in order
to maximize information captured at the stations (thus reducing the
amount of data transported). The method increases the diversity in
measurements through randomized beamforming. We demonstrate
through numerical simulation the effectiveness of the method. In
particular, we show that randomized beamforming can achieve the
same image quality while producing 40% less data when compared
to the prevailing method matched beamforming.

Index Terms— Beamforming, array signal processing, interfer-
ometry, radio astronomy, sparse signal processing

1. INTRODUCTION

The Square Kilometre Array (SKA) will form, upon completion, the
largest and the most sensitive radio telescope ever built, consisting
of millions of antennas over a total collection area of one square
kilometer [1]. The resultant data will be immense – on the order of
one terabyte of data every second – equivalent to almost one tenth
the total global internet traffic. The state of the art in engineering
and algorithms for data collection, instrument calibration, storage,
and imaging struggles to keep pace.

In addition to hardware optimization, tailored improved algo-
rithms with lower data production are a promising solution. Thus,
the work presently described was motivated by the need to reduce
data as far up the processing chain as possible.

SKA will comprise different antenna types, dishes and phased
arrays. The phased array is designed to attain a large field of view.
Antennas are grouped into antenna stations where RF signals are
received. These signals are then processed by beamforming, and sent
to a central data processor for image creation through correlation and
further beamforming [2].

For station beamforming, methods from array signal processing
can be used to optimize different criteria. The strategy currently
used in one SKA pathfinder, the Low Frequency Array (LOFAR)
[3], is matched beamforming [4]. Antenna RF signals are summed
after phase aligning the signal coming from an a priori chosen look

direction. This can be seen as a matched spatial filter [5], where the
filter is matched towards the chosen direction. Another method used
is minimum variance distortionless response (MVDR) beamformer,
equivalent to maximizing the ratio of signal power from a chosen
direction to interference plus noise [4, 6].

It is neither feasible nor desirable to send raw antenna time-
series for correlation. Beamforming, mapping down signals from
a higher to a lower dimensional space, is essentially lossy data com-
pression distributed throughout the stations. Looked at it from that
viewpoint, the following question naturally arises: how could one
maximize the information content so as to reduce the data transmit-
ted from stations to the central processor?

Thus, our goal is to reduce the amount of data and the complex-
ity of the subsequent stages. Less data coming out of the stations
means less traffic sent to the central data processor. Hence, an early
reduction in the data yields savings in data transportation cost and
the amount of processing in the later stages.

The organization of the paper is as follows. Section 2 describes
beamforming at stations, including a description of the signal model.
We then propose in Section 3 a collaborative beamforming tech-
nique for reducing data rates, and a sparse signal recovery formu-
lation leveraging the proposed beamforming. Section 4 provides a
numerical evaluation before conclusion in Section 5.

2. BEAMFORMING AT STATIONS

2.1. Signal Model

Let L denote the number of antennas and Q the number of sources.
Assume that celestial sources are in the far field, signals emitted by
them are narrow band circularly-symmetric complex Gaussian pro-
cesses, and that signals emanating from different directions in the
sky are uncorrelated [7]. The signal received by the L antennas,
x(t) : R → CL, can be stated as x(t) =

∑Q
q=1 aqsq(t) + n(t),

where sq(t) ∼ NC(0, σ2
q) is the signal emitted by source q, n(t) ∼

NC(0, σ2
nI) is the additive noise at the antennas, and aq ∈ CL is

the antenna steering vector towards source q given by [4]

aq =
(
e−j

2π
λ

r>q p1 e−j
2π
λ

r>q p2 · · · e−j
2π
λ

r>q pL

)>
, (1)

where λ is the observation wavelength, rq is the unit vector point-
ing at source q, and p1, · · · pL are the positions of the anten-
nas. This summation can be written as a matrix vector product
x(t) = As(t) + n(t), where A ∈ CL×Q has its column q equal to
aq , and s(t) : R→ CQ has its qth element equal to sq(t).

In a wide number of scientific cases, the parameters of inter-
est are the source intensities (signal variance) and positions. Be-
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Fig. 1: Hierarchical design of phased array radio telescopes. Groups
of antennas are combined as stations.

cause signals arriving at antennas are modeled as circularly sym-
metric complex Gaussian processes, the autocorrelation matrix is a
sufficient statistic. Assuming the noise and the signals to be uncor-
related, we have the correlation matrix

R = E
[
x(t)x(t)H

]
= AΣsA

H + Σn, (2)

where Σs = diag(σ2
1 , σ

2, . . . , σ2
Q) and Σn = σ2

nI, are diagonal
covariance matrices for the signal and noise respectively.

2.2. Beamforming

Here we lay the groundwork for explaining the beamforming meth-
ods described in Section 3. In particular, we will describe the hierar-
chical design of phased array radio interferometers, and then discuss
the general issue of combining signals at station level and the current
prevailing method.

In hierarchically designed phased array radio interferometers [3,
8, 9], multiple antennas are grouped according to geography into an-
tenna stations, cf. Fig. 1. The positions and the orientations of the
antennas are fixed. In order to scan different portions of the sky, indi-
vidual antennas have a large field of view [5], cf. Fig. 2. Sending all
data received from all antennas for central data processing is costly.
Hence, the data is typically reduced at stations by beamforming.

The current prevailing method is matched beamforming, which
points towards the center of a chosen region. Formally, say we
choose a region centered around direction r0. Then, the signals are
combined using a beamforming vector equal to the antenna steering
vector towards r0. If all of the stations have the same layout – which
is the case in modern radio interferometers, e.g., LOFAR core sta-
tions [3] – then all beamforming vectors are the same, leading to the
same beam shape at each station.

One approach taken to introduce variations in beam shapes is
to rotate the stations with respect to each other [3]. These rotations

antenna beam

station beam

Fig. 2: Antenna beams capture signals from a large region (green cir-
cles). Matched beamforming reduces the field of view and amplifies
the signal coming from a particular direction.

may help to reduce grating lobes, whose positions are also rotated,
and hence the signals outside the region of interest are averaged out.

Station beamforming can be viewed as linear operation on a J
dimensional signal, where J is the number of antennas at the station.
It is thus representable, for M beams at the kth station, by matrix
Wk ∈ CJ×M . The beamformer output is then

yk(t) = WH
k (Aks(t) + n(t)) ,

where (·)H denotes conjugate transpose. The correlation of two
beamformed outputs is

E
[
yyH

]
= WHAΣsA

HW + WHΣnW, (3)

where W ∈ CJL×ML is the block diagonal matrix containing the
beamforming matrices of L stations, and A ∈ CJL×Q the response
matrix of all antennas towards the Q sources.

Let us study a simple case where we have a single beamformed
output from a station k. Dropping the dependence on time for
brevity, the signals at the antennas can be written as xk = Aks+nk.
Then yk = wH

k (Aks + nk) for beamforming vector wk. The vari-
ance of the resulting signal is equal to

E
[
|yk|2

]
=

Q∑
q=1

|wH
k ak,q|2σ2

q + σ2
n‖wk‖2,

where ak,q stands for column q of Ak. Hence, the variance of the
signal from the qth source in the beamformer output of the kth sta-
tion, σ2

k,q , satisfies

σ2
k,q =

∣∣wH
k ak,q

∣∣2σ2
q

(a)

≤
∥∥wk

∥∥2∥∥ak,q∥∥2σ2
q , (4)

where (a) follows from Cauchy-Schwartz inequality. If we use the
beamforming vector wk = ak,q/

√
J , a multiple of the antenna

steering vector, then (a) becomes an equality. This is the mathemat-
ical description of matched beamfoming. In that case, σ2

k,q = Jσ2
q .

Because this beamforming vector is of unit norm, the noise variance
at beamformer output is equal to the variance σ2

n at a single antenna.
Hence, the signal coming from the qth source is amplified with a
factor of J with respect to the noise.

Intuitively, narrowband signal coming from a particular direc-
tion reaches the antennas with phase delays. Matched beamform-
ing aligns the phases of signals from a chosen direction and sums.
Hence, the magnitude of the signal is maximized, whereas because
noise is uncorrelated at antennas, it is not coherently combined.

3. COLLABORATIVE BEAMFORMING

We have seen that beamforming is essentially fixed/static at all sta-
tions. This is a waste. When all beam shapes are the same, we
cannot use the magnitude information in sky image reconstruction,
but are limited to the phase information resulting from geometric de-
lays between stations. When stations use different beamforms, the
correlation between two station outputs becomes

E
[
yky

H
m

]
=

Q∑
q=1

wH
k ak,qa

H
m,qwmσ

2
q . (5)
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As wH
k ak,qa

H
m,qwm ∈ C, the correlation equals the sum of signal

powers weighted by a constant that depends on station indices k and
m. Because of scaling variations, information is contained not only
in the phases but also the signal magnitudes. This increase in infor-
mation can then be exploited in non-linear signal recovery methods
for the improvement of the quality of the resulting image.

Another benefit of using different beamforms is a reduction in
the effects of potential systematic errors, such as grating lobes that
result from fixed beam shapes.

3.1. Randomized beamforming

We can reduce the amount of data required for the same image qual-
ity (or conversely increase image quality for the same data rate). This
is vital to make an SKA in the middle of the desert feasible. To get
different beam shapes to act collaboratively for this purpose, beam-
forming vectors at antenna stations can be chosen from a random
distribution. This method is inspired by compressed sensing, where
random measurements were shown to preserve the information con-
tained in sparse signals [10].

The multiple beams at station k can be described by a beam-
forming matrix Wk (cf. Section 3), which can be chosen with par-
ticular goals in mind:

R1: generate each matrix element from an independent and identi-
cally distributed circularly-symmetric complex Gaussian ran-
dom distribution with unit variance, and then normalize the
columns to be of unit norm;

R2: after generating the matrix as in R1, convolve each column
with a fixed beam shaping filter and truncate the excess length
(this attenuates signals coming from outside a chosen region
of interest); or

R3: generate the matrix by matched beamforming towards ran-
domly chosen directions within the chosen region of interest.

Fig. 3 illustrates typical beams from these strategies. R1 has the
largest beam variation. Vector normalization ensures the noise vari-
ance at beamformer output is equal to the antenna noise variance.
However, depending on beam shape, we may attenuate the signal
coming from a source as evident by (4). Hence, there is a trade off
between beamform variations and signal power. When only inter-
ested in a small part of the sky in the presence of high measurement
noise, using strategy R2 or R3 would be more promising.

3.2. Sparse signal recovery

Randomized beamforming is best tailored to a model-based sparse
reconstruction algorithm. One such method is to maximize the
likelihood of the observed data with respect to the parameters
of the model [4]. Radio astronomy parameters are, for point
source models, the number of sources, positions and intensities
of the sources, and the noise variance, which we represent by the
set θ = {Q, r1, · · · , rQ, σ2

1 , · · · , σ2
Q, σ

2
n}. When the samples

{X[n]}n=1,··· ,N are independent the maximum likelihood estima-
tor is [4]

argmin
θ

log det(R(θ)) + Trace
(
R−1(θ)R̂

)
, (6)
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Fig. 3: Matched beamforming and realizations of randomized beam-
forming strategies R1, R2 and R3. Randomized beams can be used
to collaboratively receive signals from a wide field of view, or in-
crease measurement diversity from a region of interest.

where R(θ) = A(θ)Σ(θ)AH(θ) + σ2
n(θ)I. In the model, the posi-

tion parameters show up in a non-linear way, and the source intensi-
ties linearly. Given the source positions, the noise variance and as-
suming A admits a left inverse, the solution for the source intensities
is equal to the diagonal elements of (AHA)−1AHR̂A(AHA)−1−
σ2
nI [11].

However, in the absence of a priori knowledge, problem (6) is
hard to solve. In such cases, because a point source model imposes
sparsity on the sky, sparse signal recovery methods, such as algo-
rithms from compressed sensing literature can be used. To this end,
we assume that the sources are on a two dimensional grid, denoted
by {ri}i=1,··· ,Ng where Ng is the number of grid points. Define
the matrix Ag ∈ CL×Ng that has kth column equal to the antenna
steering vector towards the kth grid point. Then, the signal intensity
vector ρs ∈ RNg can be estimated by least absolute shrinkage and
selection operator [12] (LASSO) by

argmin
ρs,ρn

‖R̂−Agdiag (ρs)AH
g − ρnI‖F + λ‖ρs‖1, (7)

where ‖ · ‖F denotes the Frobenius norm, ρn the noise variance, I
the identity matrix, and λ is a non-negative regularization constant.

From (3), if station k uses beamforming matrix Wk ∈ CJ×M ,
the correlation matrix becomes R = WHAΣsA

HW+σ2
nWHW,

where W ∈ CLJ×LM is the block diagonal matrix containing the
beamforming vectors. The signal recovery problem (7) is then

argmin
ρ̂s,ρ̂n

‖R̂−WH(Ag diag (ρ̂s)AH
g − ρ̂nI)W‖F +λ‖ρ̂s‖1. (8)

This is the optimization used in the performance analysis.

4. PERFORMANCE ANALYSIS

This section presents numerical simulation, showing the effective-
ness of different station beamforms through randomization and im-
age recovery using sparse signal recovery optimization (8).

For comparison of the simulation parameters to an actual ra-
dio telescope, we give the LOFAR High Band Antenna parameters.
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Fig. 4: Reconstruction MSE for randomized and matched beam-
forming for different number of beams.

Made up of 48 stations, the minimum and maximum baselines be-
tween each is 68m and 1158km respectively. Each station design
is regular with 48 receiving elements spaced 5m apart, operating at
110 MHz – 250 MHz, which corresponds to wavelengths between
1.2m to 2.7m. This spaces the high band antennas and stations more
than half a wavelength apart, creating grating lobes (cf. Section 2).

For simulation we fixed the number of stations L to 4, the num-
ber of antennas per station J to 12, and varied number of beams per
station M . There were thus LM(LM − 1)/2 = 4M(4M − 1)/2
cross-correlations and LM = 4M autocorrelations.

The spacing between antennas within a station was 5m, and the
observation frequency 200 MHz, resulting in an antenna spacing of
approximately 3.3 wavelengths. At each simulation run the stations
were positioned within a disk of radius of 60 wavelengths at random
by approximating Poisson disk sampling using Mitchell’s best can-
didate algorithm [13]. This setting produced grating lobes, which
does not adversely affect randomized beamforming. For best-case
matched beamforming we attenuated them by rotating the stations
with respect to each other (as done in LOFAR).

Source intensities were chosen from a Rayleigh distribution with
second moment equal to 2. The sources were contained in a circular
region of the l−m plane with radius 0.6, a fairly large field of view.
The locations were chosen on a grid of 600 grid points by the best
candidate algorithm to have them spread over the field of view. For
matched beamforming when M = 1, we directed the antennas to
the center of the region of interest. When M > 1, the antennas were
matched to directions chosen by best candidate sampling so that they
cover a large area when combined.

We evaluated the performance of sky image reconstruction
through mean squared error defined as MSE = 1

NI

∑NI
i=1 (ρi − ρ̂i)

2 ,

where ρ was the true sky image in the vectorized form, ρ̂ its esti-
mate, and NI = 50 the number of simulation runs.

Fig. 4 shows the MSE obtained by randomized and conjugate
matched beamforming, as well as a reference result obtained by di-
rect correlation of every antenna signal pair. The number of beams
per station ranged from 3 to 5. The number of sources was fixed to
20. Both methods behaved similarly with variations in measurement
noise. Using three beams per station with randomized beamforming
had similar accuracy to using 5 with matched beamforming.

Fig. 5 is the dual of Fig. 4. Noise variance was fixed while the
number of beams per station changed. Except for the case of a single
beam per station, the MSE performance of randomized beamform-
ing was superior to matched beamforming. The diverse beam shapes
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Fig. 5: MSE for randomized and matched beamforming as a function
of the number of beams per station. Noise variance σ2

n = 25.

MSE Matched Randomized Rate ratio
10 5 3 60 %
6 6 4 67 %
3 7 4 57 %
2 8 5 63 %

Table 1: Minimum number of beams necessary to meet MSE criteria
for matched/randomized beamforming. Noise variance σ2

n = 25.

generated by randomized beamforming results in different scaling
of sky directions for different station pairs, and thus, helped resolve
sources by also making use of the signal magnitudes. The diver-
sity of the randomized beam shapes also explains the relative per-
formance loss when using one beam. When correlating beamformed
outputs from two stations, if low magnitude response directions from
one beam overlap with high magnitude response directions from the
other, the effective signal power is attenuated as can be seen in (5).
Nevertheless, randomized beamforming improved rapidly and out-
performed matched beamforming once there were at least two beams
per station.

Table 1 shows data compression rates from Fig. 5, specifically
the required number of beams to go below an MSE level when using
randomized and matched beamforming. As can be seen, the rate
reduction for meeting the same MSE can be up to 43%.

5. CONCLUSIONS

We observed that beamforming in radio interferometry has yet to
be fully exploited, its goals to date somewhat narrow in scope. It
seemed attractive to maximize information in beamforming, getting
beams to work in unison. Towards this end, we introduced a random-
ized beamforming strategy that increases measurement diversity. We
showed that it can achieve substantial data reduction while preserv-
ing imaging quality. Sparse image reconstruction, a popular topic in
radio astronomy, could additionally benefit from this “jumbling up”
to a lower dimensional space.

We believe the SKA could benefit from a flexible, configurable
beamforming architecture. There is always a resolution and com-
putational trade-off to be made, and this would ideally be dictated
by the science case. To which end, some of the future work we
envisage includes developing further robustness in the presence of
large measurement noise. Adaptation to other array signal process-
ing problems, such as medical imaging or seismology, could also be
a fruitful avenue of investigation.

5657



6. REFERENCES

[1] P. E. Dewdney, P. J. Hall, R. T. Schilizzi, and T. J. L. W. Lazio,
“The Square Kilometre Array,” Proc. IEEE, vol. 97, no. 8, pp.
1482–1496, Aug. 2009.

[2] M. C. H. Wright, “A model for the SKA,” Tech. Rep. 16, 2002.
[3] M. P. Van Haarlem, M. W. Wise, A. W. Gunst, et al., “LOFAR:

The LOw-Frequency ARray,” Astron. Astrophys., vol. 556, pp.
A2, Aug. 2013.

[4] A. J. van der Veen and S. J. Wijnholds, “Signal Processing
Tools for Radio Astronomy,” pp. 421–463. Springer New York,
New York, NY, May 2013.

[5] S. J. Wijnholds, Fish-eye Observing with Phased Array Ra-
dio Telescopes, Ph.D. thesis, Delft University of Technology,
Delft, Mar. 2010.

[6] J. Capon, “High-resolution frequency-wavenumber spectrum
analysis,” Proc. IEEE, vol. 57, no. 8, pp. 1408–1418, 1969.

[7] G. B. Taylor, C. L. Carilli, R. A. Perley, and National Radio
Astronomy Observatory (U.S.), Synthesis imaging in radio as-
tronomy II, ASP Conf. Series, 1999.

[8] S. W. Ellingson, T. E. Clarke, A. Cohen, et al., “The Long
Wavelength Array,” Proc. IEEE, vol. 97, no. 8, pp. 1421–1430,
2009.

[9] C. J. Lonsdale, R. J. Cappallo, M. F. Morales, et al., “The
Murchison Widefield Array: Design Overview,” Proc. IEEE,
vol. 97, no. 8, pp. 1497–1506, Aug. 2009.

[10] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. The-
ory, pp. 1289–1306, Apr. 2006.

[11] A. G. Jaffer, “Maximum likelihood direction finding of
stochastic sources: a separable solution,” in IEEE Int. Conf.
Acoust., Speech, and Signal Proc., New York, NY, 1988, pp.
2893–2896.

[12] R. Tibshirani, “Regression shrinkage and selection via the
lasso,” J. Roy. Statist. Soc. Ser. B, vol. 58, pp. 267–288, 1996.

[13] D. P. Mitchell, “Spectrally optimal sampling for distribution
ray tracing,” SIGGRAPH Comput. Graph., vol. 25, no. 4, pp.
157–164, July 1991.

5658


