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ABSTRACT
This paper takes place within the field of binaural localization
in robotics. The aim is to design “active” schemes, which
combine the signals sensed by a binaural head with its mo-
tor commands so as to overcome limitations occuring in a
static context: front-back confusion, non-observability of hid-
den variables, etc. A three-stage strategy is proposed, which
entails: the short-term detection and localization of sources
from the short-term analysis of the binaural stream; the as-
similation of these data over time and the fusion with the mo-
tor commands of the binaural sensor; the improvement of this
fusion through the feedback control of the binaural sensor.
For each stage, the theoretical bases, some achievements and
open problems are outlined.

Index Terms— Robot audition, ML estimation, Kalman
filtering, information-based control, active localization.

1. INTRODUCTION

Since its emergence in the 2000s, robot audition has raised an
increasing interest within and from outside robotics. In-
deed, the combination of audition with other modalities
—embedded or deployed in the environment—as well as
the mobility offered by an auditory robot open unexpected
problems and rich perspectives [1][2]. The challenges in
terms of devices and algorithms (embeddability, real-time
performance, ego-noise. . . ), source and environment features
(human voice, noise, reverberation. . . ), tasks (acoustic effects
due to motion, barge-in situations. . . ) enriches the field [3].

Within the renewed interest for “active” binaural func-
tions, which combine the binaural perception with the motor
commands of the sensor, active binaural localization offers
the perspective of overcoming limitations in a static context
such as front-back confusion, range non-observability, etc.
A sensorimotor view of this last problem, which entails no
decisional/cognitive process, is proposed in this paper. The
way how binaural sensing and sensor motion can be interwo-
ven is described along a three-stage framework, conceptual-
ized on Figure 1. Stage A and Stage B carry out the analysis
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Fig. 1. Three-stage active binaural localization.

of the sensorimotor flow. Stage A (“Short-term detection”) im-
plements the estimation of the spatial arrangement of active
sources—possibly with the detection of their number—from
the analysis of the binaural stream over small time snippets.
Stage B (“Audio-motor binaural localization”) performs the assimi-
lation of these data over time and their combination with the
motor commands of the sensor, so as to get a first level of
active localization. On this basis, Stage C (“Information-based
feedback control”) implements a feedback control of the sensor
motion so as to improve the fusion performed in Stage B.

The following two main sections present Stage A and
Stage B along a common organization: first, modeling issues
are briefly sketched; then, the current state of the solutions
for a binaural head are outlined; last, evaluations are shown.
A conclusion discusses open problems for all three stages.

2. SHORT-TERM DETECTION

2.1. Modeling

The two microphones placed on the binaural head are named
R1 and R2. They lie in the same horizontal plane as Q
pointwise farfield sound sources E1, . . . , EQ. The aim is to
estimate the source azimuths θ1, . . . , θQ—e.g., with respect
to boresight—from the analysis of the binaural stream. To
conduct this analysis, the left and right signals zR1 , zR2 are
assumed to be finite-time samples of the random processes

zR1(t)=

Q∑
q=1

sq(t)+n1(t), zR2(t)=

Q∑
q=1

(sq(t)∗hθq (t))+n2(t). (1)

In (1), the noises n1, n2 and the contributions s1, . . . , sQ of
the emitters E1, . . . , EQ at microphone R1 are assumed real,
zero-mean band-limited, jointly Gaussian. The noise vector
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T time inverval =Ng groups ofNf (possibly overlapped) L-sample frames
R1, R2 •E1, . . . , EQ left and right microphones •Q sources
s1(t), . . . , sQ(t) contributions ofE1, . . . , EQ atR1

zR = [zR1
, zR2

]′ • n = [n1, n2]′ signals and noises vectors atR1, R2

Hθ(f) • Vθ(f) = [1, Hθ(f)]′ interaural transf. funct. • steering vector
ZR (ng,nf )[k] Fourier transform of pre-windowed zR on

frame nf of group ng for f = k
L

Cng [k] PSD of zR on group ng for f = k
L

Fig. 2. Notations

[n1, n2]′—with ′ the transpose operator— is assumed inde-
pendent of each sq . The interaural impulse response hθ(t)
accounts for scattering, and depends on the source azimuth θ.
Its Fourier transform is the interaural transfer functionHθ(f),
and Vθ(f) = [1, Hθ(f)]′ is the so-called steering vector.

The input data to Stage A is the channel-time-frequency
decomposition of zR , [zR1

, zR2
]′ on a given finite time in-

terval T . Each time signal zR1
, zR2

is divided into—possibly
overlapping—frames of L samples each. Nf consecutive
frames constitute a group of frames, and T corresponds to
Ng groups. Each frame is modulated by a window function,
then Discrete Fourier transformed. Let X(ng,nf )[k] stand
for the value at f = k

L of the transform X(ng,nf )(f) of the
nth
f frame in the nth

g group of a pre-windowed signal x(t).
The channel-time(group of frames)-frequency decomposi-
tion Z of the binaural stream over T is then the stacking
of the complex vectors ZR (ng,nf )[kb] for nf = 1, . . . , Nf ,
ng = 1, . . . , Ng , and b = 1, . . . , B, where the last subscripts
define a “useful” frequency range. The variations of the
means, autocorrelations and cross-correlations of the sig-
nals involved in (1) are assumed negligible over each group
of frames. So, relative motion between the sensor and the
emitters should be negligible as well.

2.2. The single-source case (Q = 1)

In view of the above, though the source signal s , s1 is not
wide sense stationary (WSS) over the whole interval T , a
power spectral density (PSD) Sng [k] corresponding to each
nth
g group of frames can be defined. Also suppose that: a Hann

(resp. rectangular) window function with less than 50% frame
overlap (resp. with no overlap) is used; the source and noise
spectra are roughly constant over any 1

L -width frequency
range; the autocorrelation time of hθ(t) is much lower than L.
Then the Fourier coefficients of the pre-windowed binaural
signal vector zR = [zR1

, zR2
]′ can be shown to be mutually

independent at distinct frequencies or frames, and to satisfy
E{ZR (ng,nf )[k]ZR (ng,nf )[k]†} = Cng [k], with † the Hermi-
tian transpose and Cng [k] the PSD matrix of the random
process zR corresponding to group ng evaluated at f = k

L .
Let C̄ng [k] , 1

Nf

∑Nf
nf=1 ZR (ng,nf )[k]ZR (ng,nf )[k]† be the

sample covariance matrix over the time(group of frames)-
frequency bin (ng, k). Then, the maximum likelihood es-
timate (MLE) of the source azimuth θ is given by the fol-
lowing theorem, assuming n = [n1, n2]′ is i.i.d. with PSD
Cn[k] = σ2[k]I2 (extension to unknown {σ2[kb]}b is easy).

Theorem 1 If {C̄ng [kb]}ng,b are full-rank, then the MLE θ̂ML

comes as the arg max w.r.t. θ of the pseudo log-likelihood

L(θ) =
∑

ng=1..Ng ; b=1..B

Jng [kb](θ), with (2)

Jng [kb](θ)=−Nf
(

ln
∣∣Pθ[kb]C̄ng [kb]Pθ[kb]+σ

2[kb]P
⊥
θ [kb]

∣∣
+

1

σ2[kb]
tr(P⊥θ [kb]C̄ng [kb])

)
,

Pθ[k],Vθ[k](Vθ[k]†Vθ[k])−1Vθ[k]†and P⊥θ [k],I2−Pθ[k].

Proof This is an adaptation of [4] to the broadband case, con-
sidering a single source and two sensors related by Hθ in-
stead of a freefield array, and allowing source autocorrela-
tion changes along groups of frames. First, {Cng [kb]}ng,b
is written as a function of Cn[k] and the unknowns vector
Θ = [θ, {Sng [kb]}ng,b]′, which entails Vθ[k]. Then, p(Z|Θ)
is expressed as a circular complex Gaussian pdf. Though its
arg max Θ̂ML w.r.t. Θ has no closed form, the problem is sep-
arable, i.e., the MLEs {Ŝng [kb]}ng,b of {Sng [kb]}ng,b can be
expressed as functions of θ. It follows that

max
Θ

ln p(Z|Θ) = max
θ

ln p
(
Z|θ, {Ŝng [kb](θ)}ng,b

)︸ ︷︷ ︸
= constant+L(θ)

hence the result and the “pseudo likelihood” terminology. �
Moreover, the source activity can be checked through AIC

or BIC information-theoretic criteria [5].

2.3. The multiple-source case

Turning back to (1), where each signal sq is WSS over each
nth
g group of frames and has “local” autocorrelation R(q)

ng (τ)

and PSD S
(q)
ng (f), the vector of unknowns Θ = [Θ′1, . . . ,Θ

′
Q]′

is constituted of Q (1 + NgB)-element subvectors Θq =

[θq, {S(q)
ng [kb]}ng,b]′ similar to the single-source case. The

maximum likelihood estimation is no longer separable. To
make it tractable, W-Disjoint Orthogonality is assumed, i.e.,
within any time(groups of frames)-frequency bin (ng, k), at
most one source is dominant. Assuming that the prior proba-
bility of source dominance is evenly distributed on each bin,
p(Z|Θ) now takes the form of a mixture—over the source
indexes—of circular complex Gaussian pdfs.

The extraction of the MLE θ̂ML = [θ̂1, . . . , θ̂Q]′ of the az-
imuths vector θ = [θ1, . . . , θQ]′ can be run iteratively through
the Expectation-Maximization algorithm [6], by introducing
the vector of latent random variables Y , [{Yng [kb]}ng,b]′
such that Yng [kb] = q iff the qth source is dominant on bin
(ng, kb)—i.e., is at the origin of Zng [kb]—and by assuming
mutual independence of {Yng [kb]}ng,b and {Xng [kb]}ng,b.

Theorem 2 Given a number Q of active sources, the MLE
θ̂ML of the azimuths vector θ can be obtained from an ini-
tial guess θ(init) by iterating [E-step,M-step] sequences shown in
Algorithm 1 until Stop condition holds. Importantly, the most
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Algorithm 1: Multiple-source azimuth estimation
(one iteration of the EM algorithm)

Inputs: Initial guess θ∗ issued from the previous iteration
Outputs: Most likely θ̂ generated by the current iteration

E-step (“Source separation”)
1 for ng = 1, . . . , Ng , b = 1, . . . , B do
2 For q = 1, . . . , Q do γ̄(q)

ng [kb] = exp
(
Jng [kb](θ

∗
q )
)

end

3 γ
(q)
ng [kb] =

γ̄
(q)
ng [kb]∑Q

`=1
γ̄
(`)
ng [kb]

4 end

M-step (“Source localization”)
5 for q = 1, . . . , Q do
6 θ̂q = arg max

ϑ

∑
ng=1..Ng ; b=1..B

γ
(q)
ng [kb] Jng [kb](ϑ)

7 end

Log-Likelihood computation and Stop condition

8 L(θ̂) =
∑

ng=1..Ng ; b=1..B

ln
(∑
q

1

Q
Jng [kb](θ̂q)

)
The algorithm stops when ∆L =

L(θ̂)−L(θ∗)
L(θ∗) < η, for given η.

likely azimuth of each source comes from a separate maxi-
mization, and no initial guess is needed for the sources PSDs.

Proof The proof is omitted for space reasons, see [7]. Com-
pared with Theorem 1, the auxiliary function maximized in
the M-step involves the weights {γ(q)

ng [kb]}ng,b computed in
the E-step. Each one equals P{Yng[kb]=q|zng [kb], θ

∗, Sng [kb]
∗},

the probability that the qth source is dominant in the bin
(ng, kb), conditioned on the data and the “naive” hypothesis
that the azimuth vector is θ∗—from which the most likely
corresponding source PSDs {S(q)

ng [kb]}∗q,ng,b are determined
thanks to a “local” separability. So, no initial guess is required
for the source PSDs. Besides, the global computational cost
is linear with the number of sources. �

2.4. Evaluations

Theorem 2 was extensively evaluated in simulation. Binaural
signals were synthesized from the TUB anechoic KEMARr

HRIR database [8] with 1◦ resolution. The emitted signals
were 15 seconds-long male and female speakers utterance
records from french radio, sampled at 44.1 kHz. Some sta-
tionary fan noise at predefined azimuth was added to the ear
signals by convolving it with the left and rights HRIRs.

FFTs were performed on Hanning windowed frames of
L = 1024 samples, with a L/2-overlap. Sample covari-
ance matrices {C̄ng [kb]}ng,b were computed from groups of
Nf = 4 successive frames (≈ 60 ms). Ng was set to 50, so
T ≈ 3 s. B was defined so that the useful frequency range is
7 kHz. To reduce the risk of convergence to local minima of
the log-likelihood, 20 instances of Algorithm 1, with different
initializations, were running in parallel at each localization
step, and the most likely estimate was then kept.

About 90% of the azimuths were estimated with errors
less than 3◦ for Q ≤ 3 active sources. Performances were

degraded in reverberant environments, yet good results could
be recovered by replacing anechoic HRIRs/HRTFs by BRIRs.

3. AUDIO-MOTOR BINAURAL LOCALIZATION

This section adresses active/audio-motor binaural localization
in the single-source case. It is shown how an azimuth likeli-
hood defined from above can be combined with the motor
commands of the head so as to infer its relative situation to
a static source. A Gaussian mixture square-root unscented
Kalman filter (GM-srUKF) is advocated. Contrarily to several
particle filters, it ensures self-initialisation as well as posterior
covariance consistency. Handling of false measurements and
source intermittency are reported in [9].

3.1. Modeling

From now on, the scalar k indexes the localization time,
e.g., the timestamp of a group of frames, and Ts terms the
localization period. The measurement is still the channel-
time-frequency decomposition but is now denoted by Zk.
As the spatial information carried by Zk is purely direc-
tional, the 2-dimensional state vector rk to be estimated is
the relative head-to-source translation, expressed in polar
coordinates. The 3-dimensional control input uk of the sen-
sor is the stacking of its translation and rotation velocities.
An exact discrete-time nonlinear state space equation with
Gaussian dynamic noise can be obtained, considering that u
is zero-order-held at Ts. However, no closed-form measure-
ment equation is available. Instead a likelihood p(Z|θ) can
be built from Section 2, where θ stands for the head-to-source
azimuth in rk. An approximation of p(Z|θ) is assumed to
be determined in an ad hoc way, in the form of the following
unnormalized mixture with parameters {γj ,mj , φj}j=1,...,J :

p(Z|θ) ≈
J∑
j=1

γje
− 1

2

(θ−mj)
2

φj . (3)

3.2. A Gaussian mixture unscented Kalman filter

In view of the nonlinearity of the prior state dynamics and
the frequent multimodality of the likelihood—e.g., due to
front-back ambiguity—a bank of unscented Kalman filters
(UKFs) is used, implemented in their numerically robust
square-root form [10]. After assimilating Zk, this bank con-
tains Ik filters, each ith one handling a Gaussian distribution
N (rk; r̂ik|k, P

i
k|k). The filters run in a non-interactive manner,

but their posterior probabilities {wik} are recursively updated
in view of their likelihoods w.r.t. the measurements—i.e., of
their ability to predict the available data. By developing clas-
sical computations [11][12], one gets the following theorem.

Theorem 3 The posterior pdf of rk is approximated by

p(rk|Z1:k = Z1:k) =

Ik∑
i=1

wikN (rk; r̂ik|k, P
i
k|k). (4)
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Figure 4.22: Localisation active binaurale depuis une tête sphérique en conditions réelles par
application de l’algorithme 13. La source émet des signaux de voix.

(a) (b) (c) (d)

Fig. 3. Audio-motor localization of a loudspeaker (top right edge of the pentagon) by a moving spherical binaural head.
(a): Self-initialization. (b): Front-back ambiguity when no head motion. (c)-(d): Disambiguation thanks to the head motion.

Its initalization—i.e., the prior p(x0)—satisfies w0
k = 1

I0k
and

is such that the union of the 99%-probability confidence el-
lipsoids corresponding to {N (r̂i0|0, P

i
0|0)}i=1,...,I0 covers the

admissible initial head-to-source situations. The parameters
{wik, r̂ik|k, P

i
k|k} are updated according to Algorithm 2.

Algorithm 2: Overview of audio-motor localization

Inputs: Parameters {γjk,m
j
k, φ

j
k}
Jk
1 of p(Zk|θk)

Parameters {wik−1,r̂
i
k−1|k−1

,P i
k−1|k−1

}i=1..Ik−1
of p(rk|Z1:k−1)

Control vector uk−1

Outputs: Parameters {wik, r̂
i
k|k, P

i
k|k}i=1..Ik of p(rk|Z1:k)

Time update
1 for i = 1, . . . , Ik−1 do
2 Compute the moments r̂i

k|k−1
, P i
k−1|k−1

of the ith hypothesis

of p(rk|Z1:k−1) from r̂i
k−1|k−1

, P i
k−1|k−1

, the polar state
space equation, and uk−1, with a UKF time update (see [10]).

3 end

Measurement update
4 for i = 1, . . . , Ik−1 do
5 for j = 1, . . . , Jk do
6 Fuse N (rk; r̂i

k|k−1
, P i
k|k−1

) with the jth hypothesis of
p(Zk|rk) = p(Zk|θk) in (3) through the Bayes rule.
From classical results on products of Gaussians, this yields
N (rk; r̂i,j

k|k, P
i,j
k|k) (see [13]).

7 end
8 end

Weights update (and possible pruning)
9 Compute the weights {wi,jk }i,j of the Gaussian mixture p(rk|Z1:k)

from those of p(rk−1|Z1:k−1), p(Zk|rk) (see [13]). The posterior
finally writes as p(rk|Z1:k) =

∑
i,j w

i,j
k N (rk; r̂i,j

k|k, P
i,j
k|k). Prune

hypotheses whose weights wi,jk fall below a given threshold.

3.3. Evaluations and Open problems

Experiments were conducted in an anechoic room with a bin-
aural sphere. Figure 3 shows in the world frame at four times
(from left to right and top to bottom) how the head motion
enables front-back disambiguation. The pentagon depicts the
loudspeaker. The 99%-probability confidence ellipses are as-
sociated to each hypothesis of the posterior state pdf.

4. OPEN PROBLEMS

Concerning Stage A, a thorough evaluation is in progress. The
algorithm will be compared, under reverberant conditions, to
suboptimal but computationally faster aproaches such as the
GCC-PHAT together with a time integration method (GCC
averaging, histogram), or bio-inspired approaches [14]. The
learning of the environment noise statistics will be studied.
Multi-conditional training as per [14] will be evaluated to “de-
sensitize” Hθ to reverberations. Influence of the algorithm’s
parameters L,Nf , Ng, . . . will also be investigated. The de-
tection of the number of multiple sources will be adressed.

Stage B will be extended to the multiple-source case. To
address data association, filtering in the Random Finite Sets
paradigm will be studied [15][16].

Ongoing developments concern Stage C. To simplify,
consider the case when the posterior pdf (4) at time k − 1
reduces to a single Gaussian, and a control input uk−1 is
sought so as to maximize the information at time k while re-
specting constraints on uk−1, xk, etc. The problem then boils
down to maximizing the “size” of the information matrix
Ik|k = P−1

k|k , through the maximization of its log-determinant
or trace for instance [12][17]. When using the Unscented
Kalman Filter with a closed-form measurement equation
zk = h(rk) + vk, an information update equation can be
set up in the form Ik|k = Ik|k−1 + HTkR−1Hk where both
Ik|k−1 and Hk depends on the decision variable uk−1 and
on the function h(.), but not on the measurement zk [18].
Current work consists in selecting a function h(.) to guide
the exploration, and in rephrasing the control problem as a
convex optimization problem consisting in the maximization
of the log-determinant of Ik|k subject to linear matrix in-
equalities constraints on uk−1 [19]. To reach this aim, the
fact that the prior dynamics is a rigid motion is used together
with changes of variables and embedding of nonlinearities
into uncertainties. The challenge is to check if the induced
conservativeness does not prevent the applicability of this
MAXDET solution to our genuine real problem.
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