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ABSTRACT

In this paper we propose a novel multi-channel algorithm to sepa-

rate simultaneous speakers in an environment where the microphone

array is subject to movement. When the microphones are mounted

to a person’s head, for instance, the movements can lead to ambigu-

ities with respect to the sources and to distortions in the processed

signal. The proposed system estimates the direction-of-arrival of the

speaker’s signals relative to the array and updates these estimates us-

ing an inertial measurement unit (IMU). A GMM-based localization

model is used to compute the posterior probabilities of source activ-

ity in each time-frequency bin and its parameters are re-estimated

during array movements. Then, a model-based generalized side-

lobe canceler (GSC) whose components are continuously updated,

is employed for the separation of sources. For various speeds of mi-

crophone array rotation, it is demonstrated that the IMU-based sys-

tem delivers improved speech quality when compared to the baseline

technique without IMU.

Index Terms— Multi-channel speech enhancement, beamform-

ing, source separation

1. INTRODUCTION

Adaptive beamforming is a multi-channel processing technique that

is often used for the separation of acoustic sources and is closely

related to blind techniques [1], [2], [3], [4]. When the position of the

target sources is unknown the beamformer may be combined with

an estimation of direction-of-arrival (DOA) for one or more relevant

sources. This technique has been considered for various applications

like hands-free mobile phone systems, man-machine interfaces, and

assistive devices. However, the performance of these algorithms can

be drastically reduced in highly dynamic environments where the

sources and/or the array moves. While source tracking with fixed

microphone arrays has received significant attention, the movement

of the array, for example when worn by a moving listener, has re-

ceived less consideration.

Adaptive beamformers use the spatial information provided by

a microphone array in order to reduce interferencing sources and

ambient noise. The generalized side-lobe canceler (GSC) [5] is the

most prominent example of an adaptive beamforming algorithm.

It performs best when the interferers originate from point sources

and when there is only little reverberation. This approach has been

extended by several authors to make it more robust, e.g. [6], and to
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cope with more general acoustic scenarios. For example, the TF-

GSC [7] extends the GSC for arbitrary acoustic transfer functions. In

[8] multi-channel eigenspace beamforming is used based on design-

ing different linear constraints for extraction of a desired source. [9]

contributes a model-based beamformer for source separation based

on a localization algorithm, followed by a corresponding interfer-

ence reduction scheme which is implemented in a GSC structure.

This approach performs well when the position of microphones are

fixed. However, as the microphone array moves in a multi-source

scenario, the beamformer cannot easily track a specific target signal

because of the ambiguities arising from array movements. There are

also various techniques based on independent component analysis

(ICA) that are used to improve the robustness of GSC beamformer

e.g. [10], [11]. However, these blind methods need to track a large

number of parameters to separate the target source from multiple

concurrent sources and are susceptible to the fast array movements.

Several approaches have been also proposed for localizing and

tracking multiple sources [12], [13]. Most of these approaches are

based on Kalman or particle filtering (PF) applied to localization al-

gorithms. These methods assume a specific model for source move-

ment [12] or array movement [14] and are tailored to specific appli-

cations or consider just one source. Often, the localization and sepa-

ration of multiple sources are treated separately and the generation of

audio signals for the localized sources is not considered. To illustrate

the ambiguites which arise when multiple sources are present and the

array rotates, we present in Fig. 1 a simulation result for a scenario

with two speakers T (target) and I (interferer) and a linear array of

five microphones. Initially, the target speaker T is in broadside direc-

tion of the array as shown in Fig. 1 (a). After a rotation of the array

by 60 degrees the interfering speaker I is in broadside direction, Fig.

1 (b). Then, the array is rotated back to its initial position. As we

like to lock on to the target speaker, the direction-of-arrival relative

to the array axis requires an update. Fig. 1(c) shows the performance

of a conventional adaptive localization model (our baseline system)

[9] for estimation of azimuth location of the target speaker relative

to the array. We depict the estimated relative angle θ̂(t)− θ0 as well

as the true relative direction θ(t)−θ0 at each time frame. Here, −θ0
denotes the initial azimuth. Obviously, when the array starts moving

the model cannot track the target position accurately and will shift

to the DOA of the interference.

In this paper we extend the baseline model-based adaptive

source separation technique [9] to a dynamic scenario and aim to

extract one or more target speakers when the microphones rotates.

As in [9] we use a Gaussian mixture model (GMM) based local-

ization method that controls the beamformer during microphone

movement. This model is adapted based on information obtained
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(c) Estimated angles of speaker T w.r.t. initial position.

Fig. 1. Performance of the baseline system [9] for target speaker

tracking in a two source scenario. The dashed line indicates the rel-

ative target-array angle as measured by the IMU. Note, that between

frame indices 400 - 1000 the baseline sytem confuses the target di-

rection with the direction of the interferer.

from the localization algorithm and a 9-axis inertial measurement

unit (IMU). The IMU comprises a 3-axis accelerometer, 3-axis gy-

roscope and 3-axis magnetometer that provides the relative position

of the moving object at each time step with respect to its initial

position before movement. The adaptive localization model is then

used for the adaptation of the fixed beamformer, blocking matrix

and the adaptive noise canceler of a GSC beamformer.

The remainder of the paper is organized as follows: In Sec. 2

we describe the multi-channel signal model used in this paper. Sec.

3 will discuss the proposed system and will explain the GMM re-

estimation step. Experimental results and conclusion will be de-

scribed in Sec. 4 and Sec. 5, respectively. We like to point out that

the evaluations reported here consider array rotations only.

2. MULTI-CHANNEL SIGNAL MODEL

In general, we consider an array of M microphones receiving signals

from S speakers. Using the convolution operator ∗, the received

signal at each microphone m is written as

xm(n) =

S
∑

i=1

si(n) ∗ him(n) + νm(n) (1)

where si(n) represents the source signal, him(n) represents the

room impulse response from source i to microphone m, νm(n) is

the noise at microphone m, and n is the sampling index. In order

to analyze signals in STFT domain, we take a K-point discrete

Fourier transform (DFT) over overlapping windowed signal seg-

ments (frames). Using matrix notation and neglecting cyclic effects

we obtain

X(k, b) = H
H(k, b)S(k, b) + V(k, b) (2)

where HH denotes the hermitian transpose of matrix H

H(k, b) = [h1(k, b), h2(k, b), .., hS(k, b)]
T

(3)

hi(k, b) = [hi1(k, b), hi2(k, b), .., hiM (k, b)]T

and the signal vectors are given by

X(k, b) = [X1(k, b), X2(k, b), .., XM (k, b)]T (4)

S(k, b) = [S1(k, b), S2(k, b), .., SS(k, b)]
T

V(k, b) = [V1(k, b), V2(k, b), .., VS(k, b)]
T .

In these equations, (k, b) indicate frequency index and frame in-

dex respectively. The received signals contain a mixture of target

and competing speakers and are analyzed through the proposed al-

gorithm that implements a GSC beamformer at its core.

3. PROPOSED ALGORITHM

Fig. 2 shows a block diagram of the proposed fully adaptive algo-

rithm used to extract the desired speaker. Principally, the algorithm

consists of two main parts: First, a GSC beamformer with a beam-

former Wf (k, b) looking into the target direction, a blocking matrix

B(k, b), and a noise canceler WV (k, b) that attempts to extract target

speech at each time-frequency bin. Secondly, a GMM-based estima-

tion model that includes an IMU, a localization algorithm delivering

θ̂(k, b) and the computation of posterior probabilities PθT |θ̂(k, b).
All of them are utilized to update the GSC parameters while the ar-

ray turns. Each part of this approach will be discussed in more detail

in the following sections.

3.1. Generalized side-lobe canceler (GSC)

The proposed GSC beamformer is composed of a delay-and-sum

beamformer with steering vector Wf (k, b), the blocking matrix

B(k, b), and an adaptive noise canceler with coefficient vector

Fig. 2. Block diagram of the proposed method.
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WV (k, b). As in [9] a frame-wise posterior probability of the tar-

get speaker activity in each time-frequency bin is employed for

the adaptation of the blocking matrix and the noise canceler. This

scheme first estimates the target subspace

P(k, b) = (1− PθT |θ̂(k, b))P(k, b− 1) (5)

+ PθT |θ̂(k, b)
X(k, b)XT (k, b)

∥

∥X2(k, b)
∥

∥

and then computes the blocking matrix

B(k, b) = D(M−1)M (IM×M − P(k, b)) (6)

where the operator Dab (·) selects the first a rows and b columns of

the matrix argument. PθT |θ̂(k, b) is the probability of presence of

speaker T in each time-frequency bin, P(k, b−1) is the target signal

subspace, and IM×M is an identity matrix.

Then, we can write the output signal in the (k,b)th time-

frequency bin as:

Y (k, b) = W
H
f (k, b)X(k, b)− W

H
V (k, b)B(k, b)X(k, b) (7)

where the adaptive noise canceler uses a normalized least mean

squares (NLMS) algorithm

WV (k, b+ 1) = WV (k, b)+ (8)

α(k, b)
Y ∗(k, b)B(k, b)X(k, b)

||B(k, b)X(k, b)||2

with adaptive step-size (αf denotes a fixed stepsize factor)

α(k, b) =
(

1− PθT |θ̂(k, b)
)

αf .

Obviously, the noise canceler is adapted in those time-frequency bins

which do not contain the target signal. In a multi-source scenario and

when several source are to be extracted the above equations need to

be executed for each source.

3.2. Adaptation of the GMM-based localization model

Our localization method is based on the steered-response power with

phase transform (SRP-PHAT) method [15] which scans the acous-

tic environment to find the direction of arrival of the most powerful

source for each time-frequency bin. Then, for each signal frame b,

we estimated a Gaussian Mixture Model (GMM) whose means rep-

resent the direction of arrival of the acoustic sources. The means,

together with the weights and variances, are estimated using the

expectation-maximization (EM) algorithm [16]. Finally, the poste-

rior probability of target activity in the (k,b)th bin is found as

PθT |θ̂(k, b) =
πTN (θ̂(k, b)|µT , σ

2
T )

∑C

i=1 πiN (θ̂(k, b)|µi, σ2
i )

(9)

where θ̂(k, b) is the direction of arrival estimated by localization

algorithm in each time-frequency bin, N (θ̂(k, b)|µT , σ
2
T ) is the

normal distribution describing the direction of the target source,

and µi, σ
2
i , πi are GMM parameters indicating mean, variance, and

weighting factor for all sources. The number of components C
is selected to exceed the assumed number of acoustic sources in

order model diffuse ambient noise which typically results in model

components of large variance. As outlined above, the posterior

probability is instrumental for the estimation of the blocking matrix

and the noise canceler.

When the microphone array is fixed the EM algorithm finds

these parameters with high accuracy; however, as soon as the ar-

ray moves in the multi-source scenario the estimation becomes erro-

neous, as it was demonstrated in Fig. 1. For solving this problem,

we propose here to use an IMU for the adaptation of the mean val-

ues. Furthermore, we re-estimate the weights and the variances of

the GMM for each frame and smooth all parameters via a first order

recursive system

µi(b) = µi(b− 1) + ∆µi(b)

π̄i(b) = (1− β)π̄i(b− 1) + βπi(b) (10)

σ̄2
i (b) = (1− β)σ̄2

i (b− 1) + βσ2
i (b) .

Here, b is the frame number and ∆µi(b) is the direction of arrival

update obtained through the IMU. These smoothed parameters are

then used instead of the instantaneous values to compute the pos-

terior probabilities in (9). While the array rotates it is obviously

necessary to adapt the means of the GMM, i.e. the mean direction

of arrival. However, it is also important to re-estimate and smooth

the other GMM parameters at each frame. In order to investigate the

benefit of re-estimation, the log-likelihood function using the GMM

model is evaluated during the array movement. The log-likelihood

function is expressed for a single frame b of data as follows [17,

Section 9.2.2]:

ln p(θ̂(k, b)|{πi, µi, σ
2
i }1...C) =

K
∑

k=1

ln{
C
∑

i=1

πiN (θ̂(k, b)|µi, σ
2
i )}

(11)

where θ̂(k, b) is the estimated source position in frequency bin k
and frame b using SRP-PHAT [15], K is the number of frequency

bins at each frame.

Fig. 3 then depicts the log-likelihood for a longer signal with ten

successive cycles of array rotation. In this figure, we consider three

different methods: without using the IMU (method 1), with using

the IMU and fixed GMM weight and variance parameters (method

2), and with IMU and with re-estimated and smoothed GMM pa-

rameters (method 3). According to Fig. 3 and when the IMU is used,

the log-likelihood output has less outlying low values but when the

GMM parameters are re-estimated, it becomes larger on average as

shown in the third plot. With the re-estimation and smoothing the fit

of the GMM to the data is significantly improved. Moreover, the au-

dio results as well as objective measurements validate the utility of

re-estimation of GMM parameters during movement. Tab. 1 shows

the performance of the above three different methods in terms of in-

strumental measures (see also Section 4). According to this table,

results are improved when the GMM parameters are re-estimated in

each frame and are recursively smoothed using (10).

method 1 method 2 method 3

PESQ 1.41 1.90 2.23

∆-PESQ -0.17 0.21 0.53

SIR 10.0 12.4 17.4

SDR -0.66 -0.11 3.67

Table 1. Comparison of the performance of three different methods.

Array rotations with an angular speed of 15◦/s. Method 1: with-

out IMU. Method 2: with IMU information and fixed GMM weight

and variance parameters. Method 3: with IMU information and re-

estimated and smoothed GMM parameters.
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Fig. 3. Log-likelihood measure for three different methods. Methods

2 and 3 make use of the IMU. Method 3 includes GMM re-estimation

and smoothing.

4. EXPERIMENTAL EVALUATION

Experiments were conducted in an acoustically treated room mea-

suring 7.5 x 6 x 3 meters and a T60 = 0.5s. Genelec 2029BR

speakers were placed at ±30◦ at a height of 1.2 m and a distance

of 1.5 meters from a five microphone linear array. The microphone

spacing was 3, 5, 7 and 10 cm. The array was mounted at a height

of 1.2 m on a wooden pole in the centre of a Brüel and Kjær Type

3921 turntable. The audio interface was an RME Hammerfall DSP

Multiface II. A Sparkfun 9-axis IMU (SEN-10736) was attached to

the pole directly above the microphone array. The relative position

of the microphone array was measured every 0.02 s using the 9-axis

IMU with open-source firmware [18], however, only the most recent

values recorded by the 9-axis IMU was saved with each (1536 sam-

ple) audio buffer. Recordings were made at 48 kHz and later down-

sampled to 8 kHz. By selecting the correct buffer size, synchroniza-

tion of the audio and position data was more easily maintained after

downsampling. Recordings were made using three different move-

ment speeds: 15◦/s, 30◦/s and 45◦/s. Each cycle started with the

array positioned at +30◦, perpendicular (broadside) to the female

speaker and end up through 60◦ to −30◦, perpendicular (broad-

side) to the male speaker as depicted in Fig. 1. Speech material

was taken from the Telecommunications & Signal Processing Lab-

oratory (TSP) 2 speech database [19]. Sentences were randomly

concatenated for each recording. The total recording time was ap-

proximately 4.5 minutes.

The performance of algorithm has been evaluated in terms of

the perceptual evaluation of speech quality (PESQ) [20], the PESQ

improvement (∆-PESQ) with the center microphone as the refer-

ence signal, as well as signal to interference ratio (SIR) and signal

to distortion ratio (SDR) taken from BSS EVAL toolbox [21]. The

experiments were conducted on three mixing conditions, i.e no addi-

tive background noise, white noise added at microphones with 0 and

10 dB SNR.

Tab. 2 shows the results obtained by new algorithm and the base-

line method [9]. According to this table, the proposed method pro-

duces an improvement as compared to the baseline method [9] for all

SNRs and over all angular speeds. The results show less improve-

angular speed 15◦/s
baseline method [9] proposed method

SNR [dB] 0 10 (∞) 0 10 (∞)

PESQ 1.14 1.30 1.41 1.53 2.03 2.23

∆-PESQ -0.19 -0.26 -0.17 0.16 0.41 0.53

SIR 10.1 11.50 10.00 15.8 17.9 17.4

SDR -0.4 -0.51 -0.66 2.25 2.81 3.67

angular speed 30◦/s
baseline method [9] proposed method

SNR [dB] 0 10 (∞) 0 10 (∞)

PESQ 1.14 1.23 1.46 1.56 1.97 2.21

∆-PESQ -0.25 -0.19 -0.20 0.25 0.43 0.56

SIR 10.22 10.81 11.30 15.1 16.2 17.32

SDR -0.29 -0.44 -0.04 2.90 3.32 3.60

angular speed 45◦/s
baseline method [9] proposed method

SNR [dB] 0 10 (∞) 0 10 (∞)

PESQ 1.12 1.22 1.35 1.48 1.92 2.17

∆-PESQ -0.35 -0.25 -0.20 0.17 0.41 0.53

SIR 7.95 8.01 8.54 10.9 11.1 12.8

SDR -2.25 -2.51 -2.10 1.51 1.68 3.11

Table 2. Comparison of the performance of proposed method (with

IMU and GMM re-estimation) and the baseline method [9] for an-

gular speed 15◦/s, 30◦/s and 45◦/s in top, middle and bottom re-

spectively.

ment for a faster angular speed (45◦/s), despite acceptable audio re-

sults. Informal listening test reveal indeed a significantly improved

audio quality: While the baseline system leads to inconsistent and

distorted outputs the proposed approach is able to lock onto the tar-

get source and eliminate the effects of the array rotation.

5. CONCLUSION

In this contribution we presented a novel multi-channel algorithm for

the separation of concurrent speakers which is suitable for a mov-

ing microphone array. For instance, a head-mounted microphone

array would be subject to turns of the listeners head during conver-

sations and would require an adaptation of the relative positions of

the sources. With this motivation, we investigated effect of rotational

movements of the array on the quality of the output signal. We utilize

an additional sensor to measure these rotations and use the output of

this inertial measurement unit (IMU) to adapt the estimated direction

of arrivals of the sources to the actual array position. The localiza-

tion information is captured in a Gaussian mixture model (GMM)

which is then used to compute posterior probabilities of source ac-

tivity. These probabilities then control a fully adaptive generalized

sidelobe canceler. Besides the mean directions of arrival it turns out

that all parameters of the GMM should be re-estimated in each signal

frame and should be smoothed to achieve a good audio quality. Re-

sults averaged over different angular speeds show improvements of

5.9 dB SIR, 4.39 dB SDR and 0.8 PESQ with respect to the baseline

method when no ambient noise is added. Thus, using a localiza-

tion algorithm followed by a statistical model whose parameters are

re-estimated based on information delivered by an IMU and a sub-

sequent smoothing process helps to improve the robustness of the

localization and the quality of the audio signals.
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