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ABSTRACT

Cognitive radio (CR) provides the ability to sense the range of fre-
quencies (spectrum) that are not utilized by the incumbent user
(primary user) and to opportunistically use the unoccupied spec-
trum in a heterogeneous environment. This can use a collaborative
spectrum sensing approach to detect the spectrum holes. However,
this nature of the collaborative mechanism is vulnerable to security
attacks and faulty observations communicated by the opportunis-
tic users (secondary users). Detecting such malicious users in CR
networks is challenging as the pattern of malicious behavior is un-
known apriori. In this paper we present an unsupervised approach
to detect those malicious users, utilizing the pattern of their his-
toric behavior. Our evaluation reveals that the proposed scheme
effectively detects the malicious data in the system and provides a
robust framework for CR to operate in this environment.

1. INTRODUCTION

Cognitive radio (CR) has become an important technology for ef-
ficient spectrum utilization. The CR system continuously moni-
tors the spectrum using spectrum sensing and identifies the unused
spectrum. Once the spectrum hole is identified, CR operates in
those spectra where the primary user (licensed user) radio systems
are idle [1]. This provides efficient usage of the spectrum, and has
been used in many applications, such as emergency management,
disaster recovery and by public safety personal [2].

Collaborative spectrum sensing (CSS) involve multiple sec-
ondary users or opportunistic users (SUs) performing spectrum
sensing to detect any primary user (PU) present in the spectrum.
This can introduce reliability and security vulnerabilities in the CR
system due to its collaborative nature [3]. Some of the SUs in the
system can report falsified information to the central node or fu-
sion center (FC), where the reported values from each of the SUs,
about the presence or absence of the PU in the spectrum in the
current time interval are combined to make a decision about the
availability of the spectrum. This falsified information can either
be a genuine erroneous value or malicious secondary users (MUs)
reporting values in order to invoke the FC to make an erroneous
decision about the spectrum availability. This process may cause
either under utilization of the spectrum (when the malicious FC
makes a decision that the spectrum is currently utilized by the PU,
when actually not) or leads to a denial of service attack by the
MU. The latter occurs when the MUs make the FC believe that
the spectrum is not utilized by the PU when actually it is. In this
situation, the SUs will start transmitting while the PU is present in
the spectrum and cause interference to the communication of the
licensed PU, thereby denying his/her legitimate use. Therefore it

is important to identify the existence of such MUs in the system
and remove or minimize their impact on the FC’s decision.

Detecting the existence of malicious data reported by the SUs
is challenging. In [4] a pre-filtering method is introduced to iden-
tify extreme data based on the mean of the received spectrum sens-
ing data. Weighted averages of all the reported values are used by
the FC to detect the presence of PU in the spectrum. The weights
are adjusted based on how far the values are from the mean of the
observations. However, these statistical measures are not robust
against extreme values in the data. Hence they proposed robust al-
ternatives involving median and median absolute deviations. In [5]
a statistical moment deviation method is used to detect the anoma-
lous users. In [6] and [7] reputation based frameworks and modi-
fied Grubbs tests are used to detect anomalies. In [8], a Goodness-
of-fit technique is used by comparing the empirical distribution of
the SUs with the expected distribution of the MUs. In [9], largest
gap methods utilising Tietjen-Moore and Shapiro-Wilk tests were
used for detecting anomalous users. However, all these schemes
operate on univariate data and use current or partial (previous time
instance) data transmitted by the SUs. History information and the
historic pattern of the normal and anomalous behavior is ignored
in identifying the MUs. This limits the ability of the system in
identifying changing or emerging anomalous patterns in the data.

In this paper, we present a technique that can effectively iden-
tify such anomalous data values from the SUs and hence mitigate
their effect on the CR system. In particular, we formulate multi-
dimensional feature vectors using the history of the (energy) data
vectors collected from the SUs over a time period by the FC, and
perform unsupervised (without any labeled data) anomaly detec-
tion on them. This formulation facilitates modeling the pattern
of the (energy) time series behavior over a period, and detecting
the anomalies. We map the data from the input space to a higher
dimensional space using kernel methods and find a smooth sur-
face in that space to separate the normal data and the anomalies.
This smooth surface in the higher dimensional space corresponds
to finding non-linear flexible boundaries for the normal pattern of
the data in the input space, and hence facilitates accurate detection
of complex, non-separable anomalies in the input space.

The rest of the paper is organized as follows. Section 2 in-
troduces cognitive radio and the collaborative spectrum sensing
problem in the presence of malicious users. Section 3 provides the
unsupervised one-class support vector machine based malicious
user detection framework. In Section 4, the proposed framework
is evaluated, and followed by the conclusion and future work in
Section 5.
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2. COGNITIVE RADIO: SYSTEM MODEL

Consider a CR network consisting of K secondary users, a pri-
mary user and a common receiver called as a fusion center. Each
SU performs spectrum sensing independently based on energy de-
tection and communicates the detected energy values to the fusion
center. Note that we use energy detection [10, 11] for spectrum
sensing in this work for simplicity; albeit, the proposed mechanism
is applicable in the case of any other sensing techniques, such as
coherent detection [12] and cyclostationary feature detection [13].
The FC combines all the values collected from the SUs and makes
a decision as to whether the PU is present (i.e., actively using the
spectrum) or not (i.e., the spectrum is not used). This problem can
be formulated as the binary hypothesis testing problem with H0

as PU is absent and H1 as PU is in operation.
Let us consider the spectrum sensing at a SU i. The sensing

method decides between the following two hypotheses:

xi(t) =

{
wi(t), H0

hi(t)s(t) + wi(t), H1
(1)

where xi(t) is the received signal at the ith SU at time t, s(t)
is the primary signal, wi(t) is the additive white Gaussian noise,
and hi(t) is the complex channel gain of the sensing channel be-
tween the ith SU and PU. The sensing channel hi(t) is considered
to be a time-invariant channel during the sensing process as the
sensing time is considered to be smaller than the coherence time
(the time duration within which the channel impulse response is
invariant) [10]. The status of PU is assumed to be unchanged dur-
ing the sensing process. The PU signal and noise process at each
CR is assumed to be an identical and independent random process
with zero mean and variance σ2

s and σ2
w respectively. Further, it is

assumed that s(t) and w(t) are independent of each other. The re-
ceived signal to noise ratio (SNR) is given by γ = E[|hi|2]σ2

s/σ
2
w,

where E[.] is the expectation operator.
The test statistic (energy values of the signal) E for the energy

detector at each SU is given by [14]

Ei =
1

N

N∑
j=1

|xi(j)|2
H1

R
H0

λi (2)

where N is the number of signal samples and λi is a predeter-
mined threshold. For large N [14, 15], according to central limit
theorem, the test statistic can be approximated by a Gaussian dis-
tribution. Assuming h(t) = 1, the expression for the probability
of false alarm P i

fa and the probability of detection P i
d can be given

as follows [9, 16]:

P i
fa = Q

[(
λi

σ2
w

− 1

)√
N

]
P i
d = Q

[(
λi

σ2
w

− γ − 1

) √
N

γ + 1

]
where Q(.) is the tail probability of the normalised Gaussian dis-
tribution.

Data Fusion

The FC, upon receiving the energy values from SUs, combines
them to arrive at a decision as to whether a PU is active in the
spectrum or not. FC can use either a majority rule [10] to combine
the evidence (i.e., the binary decision) from each SU as to whether

the PU is present or not, or a weighted combination of the energy
values for the decision. The weights can be assigned to be equal
for all the SUs. However, if the presence of MUs in the SUs can be
correctly detected, then the weights can be adjusted such that the
contribution from the MUs are minimised or nullified in the de-
cision making, hence providing robustness against the anomalous
users. In order to identify such malicious users, below we present a
mechanism that uses the energy values communicated by the SUs
over a period of time.

In order to detect the anomalous users from the normal users,
we use the energy values collected over a period from each SU, and
denote them as a “energy vector”, i.e., a feature vector in terms of
machine learning terminology. Hence, an energy vector from the
ith SU can be denoted as a vector yi = [Ei(1), Ei(2), ..., Ei(m)]′,
where m is the time window of energy measurements considered
by the FC for the data analysis. In this work, we use the One-Class
Support Vector Machine (One-class SVM) to identify the anoma-
lous data (energy) vectors. Note that the one-class SVM is funda-
mentally different from the traditional binary or two class SVMs.
The one-class SVM is an unsupervised methodology which do not
require any pre-labelled data or pre-training for identifying normal
and anomalous data, as opposed to the traditional binary SVMs
where labelled data are required for pre-training the system before
use (supervised method).

3. ONE-CLASS SUPPORT VECTOR MACHINE

A variety of machine learning algorithms exist for anomaly de-
tection in the literature [17–29]. A class of machine learning al-
gorithms, called kernel methods, use kernel functions to emulate
a mapping of data measurements from the input space (the space
where the data is collected) to a higher dimensional space called
the feature space [30–34]. The mapped vectors in the feature space
are called image vectors. Linear or smooth surfaces in the fea-
ture space are used to classify the data as either normal or anoma-
lous. The linear or smooth surfaces in the feature space usually
yield nonlinear surfaces in the input space. The advantage of this
method is that the dimension of the mapped feature space is hidden
by the kernel function and is not explicitly known. This facilitates
highly nonlinear and complex learning tasks without excessive al-
gorithmic complexity.

A specific class of algorithms called one-class support vector
machines (SVMs) do not require labeled data for training (i.e., an
unsupervised scheme). In this scheme a separating smooth sur-
face such as a hypersphere is found in the feature space, such that
the surface automatically separates the data vectors into normal
and anomalous. In these schemes, the proportion of data vectors
considered to be anomalous is controlled by a parameter of the al-
gorithm. Tax et al. [35] formulated the one-class SVM using a hy-
persphere, called support vector data description (SVDD). In this
approach, a minimal radius hypersphere is fixed around the major-
ity of the image vectors in the (higher dimensional) feature space.
The data that falls outside the hypersphere are identified as anoma-
lous. Figure 1 shows the geometry of the SVDD. This hypersphere
formulation uses quadratic programming optimization [35].

Consider a data (energy) vector yi in the input space from a
set of data vectors Y = {yi : i = 1..K} mapped to a the fea-
ture space by some non-linear mapping function ϕ(.), resulting in
a mapped vector ϕ(yi) (image vector). Note that the K denotes
the number of secondary users in the CR system. The aim of fit-
ting a hypersphere with minimal radius R, having a center c and
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Figure 1: Geometry of the One-Class SVM

encompassing a majority of the image vectors in the feature space
yields the following optimisation problem:

min
R∈ℜ+,ξ∈ℜn

R2 +
1

νK

K∑
i=1

ξi

subject to: ∥ϕ(yi)− c∥2 ≤ R2 + ξi,

ξi ≥ 0, ∀i (3)

where {ξi : i = 1...K} are the slack variables that allow some
of the image vectors to lie outside the sphere. The parameter
ν ∈ (0, 1] is the regularisation parameter which controls the frac-
tion of image vectors that lie outside the sphere, i.e., the fraction
of image vectors that can be outliers or anomalies. Using the La-
grange technique, the above primal problem (3) is converted to a
dual problem as follows, which is a quadratic optimisation prob-
lem:

min
α∈ℜn

K∑
i,j=1

αiαjk(yi, yj)−
K∑
i=1

αik(yi, yi)

subject to:
K∑
i=1

αi = 1,

0 ≤ αi ≤
1

νK
, i = 1...K. (4)

where k(yi, yj) = ϕ(yi).ϕ(yj) is the kernel function, and the αi

are the Largrange multipliers. The data vectors with αi > 0 are
called the support vectors. Using the solution for αi, the decision
function for a data vector y can be written as

f(y) = sgn(R2 −
K∑

i,j=1

αiαjk(yi, yj) +

2

K∑
i=1

αik(yi, y)− k(y, y)). (5)

where sgn(.) is the signum function. Anomalous data vectors are
those with αi = 1

νK
, which fall outside the sphere. Data vectors

with 0 ≤ αi < 1
νK

fall inside or on the the sphere, and are con-
sidered normal [35]. The kernel function that we use in here is the
radial basis function given by:

k(yi, yj) = exp

(
−∥yi − yj∥2

σ2

)
(6)

where, σ is the kernel width parameter. A larger value for σ pro-
vides a smoother boundary around the data, while a smaller value

provides a rugged boundary. It can be shown that ν is an upper
bound on the fraction of anomalies and a lower bound for the frac-
tion of support vectors. The ν and σ are the two parameters of this
algorithm that need to be tuned depending on the data set [35].

4. EVALUATION

The aim of this evaluation is to asses the proposed scheme for its
accuracy in detecting various malicious users in CR networks. We
also perform a study on the number of malicious users that can be
detected in a given set of SUs. Further, we analyse the effect of
the attack strength δ on the detection accuracy (for malicious user
detection).

In order to perform the evaluation, we use the following ma-
licious user attack scenarios as identified in [36]. Each malicious
user thwarts the system performance by two types of attacks, namely

• Attack-1: reporting an increased energy value yi + δ when
the PU is inactive, thus increasing the false alarm rate.

• Attack-2: reporting a decreased energy value yi − δ when
primary user is active, thus increasing the missed detection
rate.

We used the following CR system for evaluation. The total number
of SUs K = 50, N = 50, m = 100 and the SNR γ = 10dB.
We randomly switch the attacks in the system between Attack-1
and Attack-2 with a probability of 0.5. A real-valued Gaussian
Primary User signal is used along with a Gaussian noise with zero
mean and unit variance.

In order to analyse the system’s performance with the increas-
ing number of malicious users in the CR system, we changed
the percentage of MUs in the total number of SUs from 0% to
100% in steps of 5%. The attack strength δ is changed uniformly
at random in the range [4λi, 8λi], where the λi is chosen using
λi = Q−1(P i

fa)/
√
N + 1, for a given P i

fa = 0.1. The σ is
chosen to be 100 after a systematic search that gives the high-
est detection performance. The simulation is performed with the
one-class SVM, and the Receiver Operating Characteristic (ROC)
curves are produced with different ν values. The area under the
curve (AUC) is computed for each simulation while changing the
number of MUs. The simulation is run for 50 iterations of different
realisations of the random values, and the mean and the standard
deviation of the AUC values are computed. Figure 2 shows the
AUC with the number of malicious users present in the system.
The proposed scheme detects anomalies with high accuracy for a
small number of MUs present in the system. As the number of
MUs increase beyond 50% the AUC values go below 0.5, mean-
ing it becomes worse than random guessing. This is expected as
the majority of the SUs become MUs, the normal behavior will
be masked by the anomalous behavior, and hence becomes unde-
tectable.

In order to analyse the performance of the detector with the
strength of attack, we changed the attack strength δ from 0 to 25
in steps of 0.1, while keeping the percentage of MUs fixed at 20%.
The AUC values are computed as before. Figure 3 shows the de-
tector’s performance with the attack strength δ. It can be observed
that when the δ is small, the anomalous energy values fall inside
the region of normal energy values, hence become difficult to de-
tect. However, when the strength increases, it becomes easily de-
tectable by the detector. This shows the sensitivity of our detector
for the CR system.
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5. CONCLUSION

Detecting malicious users (MUs) in a cognitive radio network is
crucial for robust and secure functioning of the network. In order
to correctly identify the malicious users in the CR, we proposed an
unsupervised machine learning based scheme that used the history
of the energy measurements that the secondary users communicate
to the fusion center in order to perform robust spectrum sensing.
Further, we analysed the effect of the number of MUs in the sys-
tem, and the detector’s sensitivity in terms of the severity of the
attacks. The results reveal that our scheme is capable of detect-
ing MUs with higher detection accuracies, even when it switches
between various attack scenarios. In the future, we plan to imple-
ment an incremental scheme that can perform on-line detection as
new energy vectors become available.
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