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ABSTRACT

In this paper, a novel mode-driven switching state space ap-
proach is proposed for the joint tracking and recognition of
gestural commands. Gestures are modeled as spatio-temporal
patterns comprised of syntactic sub-units called gesturelets.
These gesturelets are directional vectors modulating a switch-
ing state space model. Stochastic context-free grammars
(SCFG) are used as generative models for command gestures
which impart a scale-invariant modeling framework. This
translates into a method that is user-independent and robust
to the signing variation between and among users. In addi-
tion to the modeling framework, we also design a library of
useful gestural patterns that cannot be represented by regular
grammars (hidden Markov models). Our approach combines
tracking and recognition in a single framework and is able
to deal with a high perplexity dataset. We demonstrate the
effectiveness of our approach by comparing SCFG models
with HMM models on synthetic gesture trajectories.

Index Terms— gestural command recognition, stochastic
context-free grammars, meta-level tracking

1. INTRODUCTION

A novel static gesture recognition technique is proposed in
this paper utilizing a joint tracking and classification ap-
proach. A syntactic framework is used to define gestures as a
sequence of geometric primitives called gesturelets. Stochas-
tic context-free grammars (SCFGs) are used as a generative
model for complex spatio-temporal patterns composed of
gesturelets from a small alphabet set. The expressive power
of SCFGs is able to capture long-term dependencies in the
gesture. Moreover, the self-embedding property of SCFGs
is used for scale-invariant recognition of each gesture. As
a result, our approach is robust to user variation in signing
speed. Our proposed approach is also agnostic to the sensor
modality used because it primarily depends on movement
patterns of the hand that can be obtained from vision-based
algorithms, time-of-flight sensors and accelerometer-based
devices.

A physics-based generative model is proposed for ges-
tures utilizing a regime-switching state space model. The 3D
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Fig. 1. The gesture recognition system diagram

coordinates of the hand/finger is the state variable of interest
whose evolution is driven by the gesturelets composing a
specific gesture. A perspective projection through a pin-hole
camera is used as the sensing modality with an additional “de-
tector” stage to convert the image measurement into a point
measurement. The switching state space model presents a hy-
brid estimation problem because in addition to the continuous
valued 3D coordinates, we are also interested in recovering
the discrete-valued modal state (gesturelet) driving the state-
space model. We propose a novel Rao-Blackwellised particle
filter to perform hybrid state estimation. In addition, the
inference of SCFG models is carried out using a modified
Earley-Stolcke parser. The modeling framework in this paper
is largely derived from our previous work in radar tracking
[1], [2], [3] where SCFG models have been applied to anoma-
lous trajectory identification.

Literature Survey: A gesture is treated as a space-time trajec-
tory in [4] where the 3D coordinates of the hand is reduced to
a 2D coordinate by a plane-fitting approach. The relative dif-
ference between 2D coordinates are then used as alphabets in
a discrete hidden Markov model to perform recognition. Such
an approach is only able to provide a discriminative model for
gestures (as opposed to our physics-based generative model).
Moreover, additional heuristics are required to account for
temporal variation in gestures due to different signers. The
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Fig. 2. (a) shows the gesturelets and the radial angular direc-
tions that they represent. (b) shows the projection of a point
in 3D space onto the camera sensor array.

SCFG framework is able to perform scale-invariant recogni-
tion due to the expressive power of its self-embedding rules.
When the Markovian assumption is invalid, certain variations
like the coupled HMM[5] and the hierarchical HMM[6] have
also been used for complex interactions in gestures. However,
such techniques cannot model unbounded long-range depen-
dencies which are conveniently captured by the hierarchical
branching structure of SCFG models.

2. SWITCHING STATE SPACE MODELS FOR
GESTURAL COMMANDS

In this section, the switching state space model relating the
temporal evolution of a gesture in 3D to the sensor observa-
tion is described. A users hand is assumed to move in one
of |Q| modes, where each mode q is associated with a partic-
ular state dynamical model. The modes refer to gesturelets
which are geometric primitives of gestural patterns. They
correspond to unit vectors in 8 quantized radial directions as
shown in Fig. 2a. The primary assumption in this paper is that
the mode dynamics evolve according to a SCFG process such
that qk ∼ P{qk|q1:k−1}.

2.1. Mode-Dependent State Dynamics

The 3D position and velocity of the hand with respect to a
world coordinate system is represented by the state variable
xk = [xk, yk, zk, 1, ẋk, ẏk, żk, 0]ᵀ in homogeneous coordi-
nates [7]. The evolution of the state can be modeled by a
mode-driven constant velocity state space model

xk =Fxk−1 +Gwk(qk), (1)
zk =Hxk + vk, (2)

where F,G are standard for a constant velocity model [8].
The sampling time is represented by δτ . Only the state dy-
namics are mode-dependent through a modulated process
noise wk(qk) ∼ N{0, Q(qk)} such that the process noise
in each mode is normally distributed with a mode-dependent

covariance Q(qk). For the radial directions shown in Fig. 2a,
we use the process noise covariance

Q(q) = ρ

[
σ2
o 0

0 σ2
a

]
ρT ,

ρ(q) =

[
sin(q) cos(q)
− cos(q) sin(q)

]
,

where σ2
o is the variance orthogonal to the mode direction rep-

resented by q and σ2
a is the variance along the direction of

mode q. The rotation matrix ρ is used for proper orientation
to the mode q. The process noise is a 2-dimensional random
variable restricted to small accelerations (nearly constant ve-
locity model) only in the x and y directions. The simplifying
approach in our modeling approach is that the gesture occurs
in the x−y plane and that there is negligible movement in the
z direction.

The sensor observation is modeled as the perspective pro-
jection of a pinhole camera model. A 3D point in real world
homogeneous coordinates is represented as s = [x, y, z, 1],
where s is the positional subset of the target state x. The pro-
jection operation is a non-linear operation represented by the
camera projection matrix P = K [M |t], where K represents
the intrinsic parameters of the camera, M is the orientation
of the camera-centered frame with reference to the world co-
ordinate frame and t is the translation of the camera-centered
frame from the world origin. The projected 2D homogeneous
coordinates ũ = [ũ, ṽ, w̃]ᵀ are obtained by the action of the
camera projection matrix ũ = P s. The image coordinates
z = [u, v]ᵀ are obtained by the normalization to the z = 1
plane such that u = ũ

w̃ and v = ṽ
w̃ . The perspective projec-

tion operation is shown in Fig. 2b.
The non-linear operation involved in the perspective pro-

jection is not amenable towards use with a Kalman filter.
However, inspired by the projective Kalman filter [9], an
adaptive measurement matrix Hk = αkP can be designed to
incorporate the effects of the non-linear operation such that

αk =
1

P 3 · x̂k|k−1
I4×4. (3)

The notation P 3 refers to the 3rd row of the projection matrix
P and x̂k|k−1 is the predicted state using the dynamics in (1).
The perspective projection model projects a point in world
coordinates into pixel coordinates on a image. We assume
that a detection operator D operates on each image captured
by the camera and outputs the centroid of the hand (or tip of
the finger) as a point measurement.

2.2. Gesture Models

In this section, we describe SCFG gesture models for the ges-
tural patterns shown in Fig. 3.

1. Right-angular patterns: The right-angular gestural
models are characterized by sentences of the form
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Fig. 3. (a) shows patterns having a right angular part. These
can be used as directional commands signifying operations
like “next” or “previous”. Also depicted are patterns look-
ing like a digital signal. (b) shows triangular patterns which
are also called arcs. (c) shows trapezoidal patterns which are
closely related to arcs.

a2ngn. They can be used to denote directional com-
mands such as “left”, “right”, “next”, “previous” etc.
The primary SCFG rule for such patterns is of the
form X → AAX G with X being a self-embedding
rule. Repeated applications of such a production rule
generates 2 a’s for every g.

2. Digital-signal like patterns: Digital-signal like patterns
are represented by rules of the form engmekcmen.
These are intuitive patterns that can be used for posi-
tional commands like “top”, “bottom”, “front”, “back”
etc depending on the orientation of the hump. The most
characteristic feature of this gesture is an equal number
of movements in opposite directions represented by the
gesturelet directions g and c. These can be captured by
a self-embedding rule of the form X → GX C to gen-
erate equal number of g’s and c’s. In addition, an equal
of e’s can be generated by a different self-embedding
rule of the form S → E S E.

3. Triangular and Trapezoidal patterns: Triangular ges-
tural models are characterized by sentences of the form
fndn or fndnam with two neighboring sides of equal
length. Such patterns are differentiated from trape-
zoidal patterns of the form fnemdn or fnemdnak. A
recurring theme in SCFG models of such patterns is
the self-embedding rule X → F X D to ensure equal
lengths for the gesturelets f and d.

3. RAO-BLACKWELLIZED SYNTACTIC
TRACKING FOR CLASSIFICATION

In this section, a novel Rao-Blackwellised multiple model
particle filter that uses the one-step prediction probability of
an SCFG model as a mode proposal density is derived. The
gesture recognition task is viewed as a model classification
problem using likelihoods computed from the Earley-Stolcke
parser.

3.1. SCFG-based Multiple Model Particle Filter

The filtering density P{q1:k−1,x1:k−1|z1:k−1} involving
both a discrete-mode and continuous state can be numerically
approximated by the random measure {(q(i)1:k,x

(i)
1:k), w

(i)
k }

Np

i=1

consisting of Np particles and weights w(i)
k .

Denote the conditional probability distribution of the
mode as the modal probability χ1:k = P{q1:k|z1:k}. We ob-
serve that conditioned on the mode sequence q1:k, the density
P{x1:k−1|q1:k−1, z1:k−1} is Gaussian and can be computed
analytically using the optimal Kalman filter if the marginal
posterior density P{q1:k|z1:k} is known. The modal density
satisfies the alternative recursion

P{q1:k|z1:k} =
P{zk|q1:k−1, z1:k−1}P{qk|q1:k−1}

P{zk|z1:k−1}
×P{q1:k−1|z1:k−1}, (4)

where the term P{zk|q1:k−1, z1:k−1} is implicitly depen-
dent on past base state values x1:k. Instead of approximat-
ing the entire filtering density, a weighted set of samples
{q(i)1:k, w

(i)
k }

Np

i=1 is used to only represent the marginal poste-
rior distribution χ1:k. The marginal density of the base x1:k

is a Gaussian mixture

P{x1:k|z1:k} =

∫
P{x1:k|q1:k, z1:k}

Np∑
i=1

w
(i)
k δ

q
(i)
1:k

(q1:k)

=

Np∑
i=1

w
(i)
k P{x1:k|q(i)1:k, z1:k} (5)

that can be computed efficiently with a Kalman filter bank.
The Rao-Blackwellised particle filter samples the modal state
qk ∼ ζk|1:k−1 from the one-step prediction probability in (8).
We sample q(i)k and then propagate the mean x̂

(i)
k and covari-

ance Σ
(i)
k of xk with a Kalman filter [8]. The conditional

density of the discrete-valued mode history q1:k−1 is approx-
imated by a set of Np weighted random particles as the em-
pirical random measure {q(i)1:k−1, w

(i)
k−1}

Np

i=1.

The prediction for the random measure {q(i)1:k−1, w
(i)
k−1}

Np

i=1

is performed using a suitable proposal πRBPF{q(i)k |q
(i)
1:k−1, z1:k−1}.

The bootstrap proposal is chosen such that prediction of the
modal state is given by

πRBPF{q(i)k = v|q(i)1:k−1} = ζ
(i)
k|k−1(v), (6)
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Fig. 4. (a) shows the RMSE in position (x, y only) (b) shows the RMSE in velocity (x,y only) and (c) shows the receiver
operating characteristics for the triangular gesture models. The area under the curve (AUC) is a metric between 0 and 1, where
the best classifier has an AUC closest to 1.

where ζ(i)k|k−1(v) is the SCFG one-step prediction probabil-
ity in (8) for v ∈ V and i = 1, . . . , Np. At the end of
each cycle of the sequential importance sampling step, the
base state marginal is computed using (5) such that x̂k|k =
E{xk|z1:k−1} and Σk|k = cov(xk|z1:k).

The measurement update for the modal state is performed
by the incremental importance weight update for the particles.
In the case of using the bootstrap proposal, the importance
weights reduce to the mode likelihood

P{zk|q1:k−1, z1:k−1} = N{zk; zk|k−1, Sk}, (7)

where Sk is the covariance after measurement update in the
Kalman filter[8]. The one-step ahead prediction P{qk|q1:k−1}
for the SCFG can be computed from a left-right pass over an
observed sequence. The one-step prediction utilizes the prob-
abilistic rules of the SCFG model to predict the next mode in
the sequence and is used as a proposal density for the particle
filter in Sec. 3.1. The one-step prediction probability

P{qk = v|q1:k−1} =
P{q1:k−1, qk = v}

P{q1:k−1}
=
ζk(v)

ζk−1
, (8)

where v ∈ Q is an element of the finite mode set Q and ζk
is the prefix probability of a partially observed string. The
Earley-Stolcke parser [10] provides an efficient algorithm to
compute the prefix probability and the related one-step pre-
diction probability in (8). For the sake conciseness, the reader
is referred to previous work [1] for the expressions required
to compute these quantities.

4. NUMERICAL EXAMPLES

Simulations are carried out using synthetic data assuming an
ideal pin-hole camera without any lens distortion effects. The
characteristics of a cell-phone camera are assumed with focal
length of 4mm and a camera sensor format of 1

3.2”. A trajec-
tory is simulated in 3D coordinates in the plane at z = 1m
perpendicular to the optical axis following different gesture

shapes. Perspective projection is then applied to the loca-
tion component of the target state contaminated with addi-
tive noise producing sensor measurements that act as input to
the proposed filter. The additive noise models the efficacy of
a hand/finger localization algorithm used in segmenting the
hand from the background of the image. It is typically im-
pulsive in nature, but a simplifying Gaussian assumption can
be made analogous to [9]. A filter bank is maintained with
each filter tuned to a particular gesture model. The model
with the maximum likelihood at the end of the static gesture
is chosen as the correct model and the filtered state estimate
from that model is used for performance metrics. The root
mean square error in position and velocity is used as a track-
ing metric and model mismatch rates are used as a classifica-
tion metric. The results are shown in Fig. 4. The SCFG model
have lower RMSE than the Markov chain based models. Only
the receiver operating curve (ROC) for the triangular gesture
models is shown in Fig. 4c. Other models have similar ROC
curves in which the SCFG models have a larger area under
the curve. The SCFG models are not learned, but are ini-
tialized using system-theoretic constraints derived in [1]. A
simulated dataset is used to calculate average lengths of the
gestures. Fully connected Markov models are learned from
this dataset as the competing framework.

5. CONCLUSION

A novel physics-based generative model utilizing an SCFG
modulated state-space is formulated for various gestural com-
mands. The joint tracking and classification of gestures is car-
ried out using a novel Rao-Blackwellised SCFG particle filter
employing a projective Kalman filter for the continuous state
variable. From numerical simulations, it can be observed that
the SCFG models outperform Markovian models. In particu-
lar, at low SNRs (when the hand/finger detection algorithm is
performing poorly), the long-range dependencies in the spa-
tial pattern inform better tracking and classification.
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