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ABSTRACT

In outlier hypothesis testing, multiple observation se-
quences are collected, a small subset of which are out-
liers. Observations in an outlier sequence are generated
by a mechanism different from that generating the obser-
vations in the majority of sequences. The goal is to best
discern all the outlier sequences without any knowledge
of the underlying generating mechanisms. A general-
ized likelihood test is considered in the fixed sample size
setting. In the sequential setting, a test based on the
Multihypothesis Sequential Probability Ratio Test and
the repeated significance test is considered. The sequen-
tial test outperforms the generalized likelihood test when
the lengths of the observation sequences exceed certain
values. Applied to a real data set for spam detection, the
performance of the proposed tests is shown to be supe-
rior to those based on the maximum mean discrepancy
for large sample size.

Index Terms— anomaly detection, universal outlier
hypothesis testing, generalized likelihood test, multihy-
pothesis sequential probability ratio test, maximum mean
discrepancy

1. INTRODUCTION

Consider the following inference problem of outlier
hypothesis testing. Among M independent and mem-
oryless observation sequences, it is assumed that there
is a small subset (possibly empty) of outlier sequences.
The observations in an outlier sequence are distributed
according to an “outlier” distribution, distinct from the
common “typical” distribution that governs the observa-
tions in the majority of sequences. The goal is to design
a test to best discern all the outliers. We are interested
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in a universal setting of the problem, where the test has
to be designed without any knowledge of the outlier and
typical distributions. Outlier hypothesis testing arises
in fraud and anomaly detection in large data sets stud-
ied here, environmental monitoring in sensor networks,
spectrum sensing and high frequency trading.

It is to be noted that outlier hypothesis testing is dis-
tinct from statistical outlier detection [1, 2], where the
goal is to efficiently winnow out a few outlier observa-
tions from a single sequence of observations. In statis-
tical outlier detection, the outlier observations constitute
a much smaller fraction of the entire observations than
in outlier hypothesis testing, and they can be arbitrarily
spread out among all observations.

The fixed sample size setting of universal outlier hy-
pothesis testing was studied in [3]. The main finding
therein was that the generalized likelihood (GL) test is
far more efficient for universal outlier hypothesis testing
than for the other inference problems studied in a uni-
versal setting, such as homogeneity testing and classifi-
cation [4-6]. In particular, for outlier hypothesis testing,
the GL test was shown to achieve universally exponential
consistency under every non-null hypothesis, and consis-
tency under the null hypothesis. In addition, when there
is at most one outlier, as M goes to infinity, the achiev-
able error exponent of the GL test converges to the abso-
lutely optimal one achievable when both the outlier and
typical distributions are known.

In the sequential setting, the goal is to identify all the
outlier sequences using the fewest number of observa-
tions on average. A universal sequential test based on
the principles underlying the Multihypothesis Sequential
Probability Ratio Test (MSPRT) [7] and the GL test [8]
was proposed in [9]. The proposed test also adopts a
time-dependent threshold, which is inspired by the re-
peated significance test [10, 11]. The proposed test was
shown to achieve universally exponential consistency un-
der every non-null hypothesis, and yield consistency un-
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der the null hypothesis. In addition, when there is at most
one outlier, as M goes to infinity, the achievable error
exponent of the proposed test approaches the optimal er-
ror exponent achievable when both the typical and outlier
distributions are known.

In a recent work by Zou, et al. [12], the authors pro-
posed a universal test for the fixed sample size setting,
which is based on mean embedding of distributions into
areproducing kernel Hilbert space (RKHS) [13]. The test
is constructed using estimates of the maximum mean dis-
crepancy (MMD) between the distributions underlying
each pair of observation sequences. This test was shown
to be universally consistent, and sometimes universally
exponentially consistent for various models. However, it
is not known whether the MMD-based test can be gener-
alized to the sequential setting.

In this paper, we evaluate the performance of the vari-
ous proposed tests on a spam detection data set. Multiple
sequences of emails are collected. One of the sequences
contains only spams, while the rest non-spams. The goal
is to identify the outlier sequence that consists of only
spams. It is shown that for large enough sample size,
the sequential test outperforms the GL test, which again
yields better performance than the MMD-based test for
this data set.

2. PRELIMINARIES

Throughout the paper, random variables are denoted by
capital letters, and their realizations are denoted by the
corresponding lower-case letters. All random variables
are assumed to take values in finite alphabets.

For a finite set ), let Y™ denote the m Cartesian
product of ), and P ()) denote the set of all probability
mass functions (pmfs) on ). The empirical distribution
of a sequence y = y™ = (y1,...,Ym) € Y™, denoted
by vy =7y € P (), is defined at each y € ) as

1
v(y) £ - {k=1,....m:ys =y} |

In the rest of the paper, we restrict our attention to
models with at most one outlier, where the outlier dis-
tribution does not depend on the identity of the outlier.
Results on models with multiple and possibly distinctly
distributed outliers can be found in [3].

Consider M > 3 independent sequences, each of
which consists of i.i.d. observations. Denote the k-th
observation of the i-th sequence by Yk(z) € Y. Itis as-
sumed that there is either one or no outlier among the M
sequences. In particular, if the i-th sequence is the out-
lier, the observations in that sequence are uniquely dis-
tributed according to an “outlier” distribution u € P()),
while all the other sequences are distributed according
to a “typical” distribution 7 € P(}). Nothing is known

about 1, and T except that i # m, and that each of them
has a full support.

Conditioned on the i-th sequence being the outlier,
1 = 1,..., M, the joint distribution of the first n obser-

vations is
n

-6 T ()

Di (y]\/fn)

2 L™, p, ). (1)

Under the null hypothesis with no outlier, the joint distri-
bution of the first n observations is given by

pol™) = TT T

k=1i=1

3. FIXED SAMPLE SIZE SETTING

We first consider the setting where the number of obser-
vations in each sequence is fixed at the outset. A fixed
sample size test for the outlier is done based on a uni-
versal rule § : YM™ — {0,1,..., M}, where “0” cor-
responds to a decision in favor of the null hypothesis.
Specifically, the test ¢ is not allowed to be a function of
the unknown distributions (u, 7).

The accuracy of a test is gauged using the maximal
probability of error, defined as

P{o(YM") # i}

We say a test is universally consistent if the maximal
probability of error vanishes for any (u,7), u # w, as
n — oo. Further, it is termed universally exponentially
consistent if the exponent for the maximal probability of
error, defined as

A
Pmax =

max
i=0,1,...,M

1
lim ——log Ppax,
n—oo N

A
a =

is strictly positive for any (u, 7), u # 7.

3.1. Universal Test

For each ¢ = 1,..., M, denote the empirical distribu-
tion of ¥ by ;. In the universal setting with (u, )
being unknown, we compute the generalized likelihood
(GL) of y™™ by replacing the y and 7 in (1) with their
maximum likelihood (ML) estimates ji; £ v;, and 7; £
Z"'#ﬂk, i=1,...,M, as

M—-1
ﬁlimiv (yMn) _ Lz (yM",/fm ﬁz) )

The test can be described as

arg max ﬁlimiv(yMn)’ if max % (logﬁ;niv(ykfn)
Mn i=1,....M J#k '
W= —log ™ (™)) > An,
0, otherwise,

2
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where \,, = 2(M — 1)|)|*™ and the ties in the first

case of (2) are broken arbitrarily.

3.2. Results

The performance of the GL test in (2) is characterized in
the following theorem, and its proof can be found in [3].

Theorem 1. The test in (2) is universally consistent, i.e.,
Sfor any p, m, 1 # 7, it holds that

Poax — 0

as n — oo. The test also yields a positive exponent for
the conditional error probability under every non-null
hypothesis (cf. Theorem 2 and 5 in [3]).

In addition, under every non-null hypothesis, as
M — oo, the achievable error exponent of the test in (2)
approaches the absolutely optimal one achievable when
both i, T are known (cf. Theorem 3 and 5 in [3]).

4. SEQUENTIAL SETTING

A sequential test for the outlier consists of a stopping rule
and a final decision rule. The stopping rule defines a ran-
dom stopping time, denoted by N, which is the number
of observations taken until a final decision is made. At
the stopping time N = n, a decision is made based on
a decision rule § : YM™ — {0,1,..., M}. The overall
goal of sequential testing is to achieve a certain level of
accuracy for the final decision using the fewest number
of observations on average.

We say a sequence of tests is universally consistent if
the maximal error probability Py, ., defined as

max P, {5 (YMN) # z} ,

A
Rnax = .
1=0,1,..., M

vanishes for any u, 7w, # 7. Further, we say it is uni-
versally exponentially consistent if under each hypothe-
sis, the exponent for the maximal error probability with
respect to the expected stopping time is strictly positive,
i.e., there exists a; > 0 such that

< B IOg Prnax

E, [N] 1+01) B

Qg

for any p, 7w, pt # 7 as Ppax — 0.

4.1. Universal Sequential Test

The proposed sequential test stops when the GL for the
most likely hypothesis is larger than those for all the
competing hypotheses by a time-dependent threshold, if

that happens not too late. In particular, the test can be de-
scribed by the following stopping and final decision rules

N = min (1\7, LTlogTJ), (4)
o) MN . T <
5 — z(Y ) }f]yleogT )
0 if N >TlogT,
where
N Agniv (y]Wn)
N = argmin | ————"0 > T(n + 1)MYI
n>1 | maxpit (yMn)
J#i
(6)
and i(yM") £ argmax p" (y™") is the instanta-
i=1,...,M

FRREE)

neous estimate of the non-null hypothesis.

4.2. Result

The performance of the sequential test in (4) — (6) is char-
acterized in the following theorem. We provide only a
sketch of the proof due to space limitations.

Theorem 2. The proposed sequential test in (4) — (6) is
universally consistent, i.e., for any j, 7, p # 7, it holds
that

Rnax —0

as T — oo. The test also yields a positive exponent (cf.
(3)) for the maximal probability of error under every non-
null hypothesis (cf. Theorem 3 in [14]).

In addition, under every non-null hypothesis, as
M — oo, the achievable error exponent of the test ap-
proaches the absolutely optimal one achievable when
both u, m are known (cf. Proposition 1 and (17) in [14]).

Proof. Foreachi = 1,..., M, it follows from the con-
vergence of the empirical distributions and the uniform
integrability of the sequence of rvs {N/log T'} that

N 1
lim E; ‘——7’ —0, )
T5o0 logT  a(p,m)
where a(u,m) > 0 for any p,m, u # 7. For each i =
1,..., M, we then establish using Sanov’s theorem and
the Markov inequality that
. C s T, y 7M
poozi) < QBT

where C(p, 7, |Y|, M) is a constant independ of 7. In
addition, it follows from the definition of the test that
(1Y, M)

Po{0 # 0} < =22 ©)

The claim of universal consistency now follows from (8)
and (9); and the claim of universal exponential consis-
tency under each non-null hypothesis now follows from
the combination of (7) — (9). O
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Remark 1. An interesting question here is whether one
can set the value of the threshold T to satisfy a predefined
level of test accuracy in the completely universal setting.
It can be shown that although an arbitrarily small prob-
ability of error can be achieved with T sufficiently large,
the exact value of T' cannot be set unless we have an a
priori lower bound for the distance between (i and .

5. APPLICATION TO SPAM DETECTION

We design an experiment relevant to spam detection to
evaluate the performance of our tests on a real data set.
The data set contains information from 4610 emails (each
being labeled as a spam or non-spam) addressed to an
employee at Hewlett-Packard (HP) [15]. The informa-
tion for each email consists of relative frequencies of a
set of 48 words and 6 punctuation marks. We shall refer
to the relative frequencies of such words and punctuation
marks as features. There are 1813 spams among the 4601
emails.

The specific application that we envision pertains to
identifying spam sources of an individual email account.
Consider the situation where an email account may be
spammed by a few vicious IP addresses, which constitute
a small fraction of all possible IP addresses. Cast into the
formulation of outlier hypothesis testing, each sequence
consists of emails from a certain IP address. When an
account is compromised, a small subset of the sequences
are outliers that contain only spams, while the majority
of the sequences are typical with non-spams. The goal is
to decide whether an email account is compromised, and
if so, which are the sources of spams.

The experiment is designed such that there is exactly
one outlier sequence among M = 6 number of se-
quences. The outlier sequence contains only spams, and
typical sequences non-spams. It is known that the values
of certain features, such as the relative frequencies of
“RE”, “FREE”, the name of the recipient, and the name
of the company where the recipient is employed (“HP”
and HP laboratory (“HPL”)), tend to vary greatly be-
tween spams and non-spams [15]. In this experiment, we
choose the relative frequencies of “HP”, “HPL” and “RE”
as the observations. Specifically, the k-th observation of
sequence i, i = 1,..., M, is y,(;) = (y,(;)l,y,(;)z,y]%)
where y,(cz)1 is the relative frequency of “HP” in the cor-
reponding email, y,(:)z of “HPL”, and y,(jé of “RE. It is
assumed that the coordinates of an observation are mu-
tually independent, and identically distributed across the
observations.

In the original data set, the features take continuous
values in the finite interval of [0,100]. The tests de-
scribed in Section 3 and 4 are only applicable when the
observations take values in finite alphabets. In order to

apply our proposed tests, the observations are first quan-
tized, where the quantization intervals of a certain feature
are appropriately chosen based on the distribution of the
feature values over all emails, regardless of their labels.
Specifically, for a certain feature, the region in [0, 100]
which finds the majority of the values of said feature is
quantized more finely than other regions. There are 5
levels in the quantizations for “HP” and “HPL”, and 6
levels for “RE”. The value of each quantization interval
is chosen to be the midpoint of that interval.

We apply the sequential test in (4) — (6) to the quan-
tized data with a series of increasing thresholds 7. For
each T, the sequential test is repeated a number of tri-
als using bootstrap samples (we randomly permute the
emails when we run out of data, and reuse the permuted
data). For comparison, we also evaluate the performance
of various fixed sample size tests including the GL test
in (2), and the MMD-based tests in [12]. One advan-
tage of the MMD-based test is that it is applicable when
the underlying distributions are continuous. In this ex-
periment, we implement the MMD-based test using the
original data (continuous), the quantized data, and the in-
dices of the quantization intervals, respectively. The nu-
merical results are obtained by averaging over a number
of trials. It is shown in Figure 1 that the sequential test
starts to outperform all the fixed sample size tests when
the average stopping time exceeds 30. And the GL test
outperforms all three MMD-based tests for large enough
n, which agrees with the optimality result of the GL test
in Theorem 1. In particular, the GL test outperforms the
MMD-based tests when the length of the sequences n is
larger than 20. This is due to the fact that an intermediate
step of the GL test is to estimate the underlying distribu-
tions (cf. Section 3.1), which becomes more accurate as
n increases.

‘0910 (Pmax)

—*— Segential test
—+— Gl test
4k —=o&— MMD using original data

—<— MMD using quantization indices

—a— MMD using quantized data

5 L L L L L
15 20 25 30 35 40 45

Fixed sample size setting: length of each sequence
Sequential setting: average stopping time

Fig. 1. Comparison between the sequential test and vari-
ous fixed sample size tests.
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