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ABSTRACT

The problem of efficiently identifying regions of interest
arises in the context of surveillance, monitoring and explo-
ration of a large area or network involving social, sensor,
communication network data. We formulate these problems
in terms of locating optimum values of signals on graphs. In
this perspective we associate features with nodes/edges of a
graph where the maxima/minima of these features correspond
to interest points. We develop an algorithm that adaptively
probes local sub-collection of nodes (local regions) on the
graph and sequentially refines the search space from noisy
averaged returns from each probed region. The size of the
region determines the cost of the probe with larger regions
corresponding to lower cost. Our goal is to minimize regret
after T rounds with minimal budget/cost. Under suitable
smoothness conditions on the signal we show that after T
rounds the cumulative regret scales optimally as O(

√
T ) with

significant cost gain over other state-of-art techniques.

1. INTRODUCTION

The problem of searching for a region of interest (ROI) in a
large area or network can be both time and resource inten-
sive. The goal of this paper is to develop a sequential learning
mechanism that identifies the ROI in a given time with min-
imum cost. We formulate this problem as finding optimum
of a signal defined on the nodes of a graph and develop an
algorithm that narrows down the search operation around the
optimal node using low cost search actions.

This problem arises in a number of applications involv-
ing surveillance, monitoring and exploration of a large area
or network. In sensor network (SNET) surveillance, sensors
usually have a limited sensing range [1] and can only reli-
ably sense presence/absence of target within their immedi-
ate vicinity. Consequently, the sensed field decays smoothly
with distance from the target. To account for limited energy
budget, several papers have dealt with sleep/wake scheduling
(see [2]). Here a group of sensors are woken up sequentially
based on probable locations of target. Those sensors then
in principle coherently beam-form their signals to the fusion
center, which then receives an aggregated signal. There is an
inherent energy-resolution tradeoff here. Larger the pool of
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sensors involved in beam-forming smaller the required SNR
and hence lower the energy requirement [1, 3]. On the other
hand larger the sensor pool, higher the target ambiguity. A
similar cost-resolution tradeoff also arises in aerial reconnais-
sance. Larger areas can be surveilled at higher altitudes more
quickly (lower cost) but suffers lower resolution.

We model these instances in terms of a graph with n nodes
denoting locations, edges denoting neighboring locations and
feature values denoting the signal associated with a location.
The goal in these cases can be abstractly viewed as locating
nodes with largest signals. Our approach is to sequentially
probe larger regions (at low cost) in the initial phases and
switch to high-cost high-resolution probes once a rough esti-
mate has been obtained. Our goal is to develop strategies that
result in small cumulative regret over T rounds (with T � n)
while minimizing the cumulative cost of the probes. Regret
is described as the difference between the largest signal value
and the average signal value from the probed region. The
noisy returned signal is commonly referred to as the reward.

In many applications such as in SNET surveillance, the
signal around the interest point decays slowly. We can ex-
press signals in terms of the graph eigenvectors. A smooth
graph signal is expressed as a linear combination of eigenvec-
tors associated with the smallest eigenvalues, and the learn-
ing of graph signal can be posed as regression on the eigen-
vectors of the graph Laplacian [4], [5]. We use the frame-
work of linear bandits [6], [7] to learn optimum of smooth
reward function on a graph, where the set of arms correspond
to choice of nodes and their neighbors. In our setting, the
arms are themselves graph signals, and their cost is defined
using graph Fourier transforms.

Related work: We briefly describe several works that ex-
ploit structural properties of graph signals in learning. The
works in [8], [9], [10], [11], present a sampling perspective
for reconstructing signals from samples collected from a sub-
set of nodes. In contrast our goal is to adaptively determine a
region-based sampling scheme to identify maxima of the sig-
nal. Our work is most related to [12]. That paper develops a
bandit approach to learning maxima and minima for smooth
functions on a graph. It proposes the so called SpectralUCB
algorithm and presents regret guarantees of order d

√
T , where

T is the number of rounds and d is effective dimension that
depends on T . Both T and d can in general be much smaller
than n (the number of nodes on the graph). Other related
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works include [13], where each node is assumed to be a lin-
ear bandit with unknown parameters that are smooth on the
graph. In [14] the authors assume that the node rewards are
correlated. They exploit the fact that observing rewards from
a node reveals information of its neighbors. For recent works
that consider cost in bandits see [15] and [16] as well.

Our contributions: We provide a setup using linear ban-
dits for searching on large area that can be represented as
graphs. In contrast to the above approaches we describe cost
as well as regret in terms of arms of the bandit and the un-
derlying signal. Both the signal and the cost is then related
to the spectral properties of the graph. We develop an algo-
rithm that aims to maximize the rewards collected from the
arms while minimizing the cost. We show that our algorithm
not only guarantees regret bound of the order d

√
T , but also

guarantees reduction in cost that is of order T when compared
to the SpectralUCB.

The paper is organized as follows. In Section 2, we give
problem formulation and setup the notations. In Section 3, we
present our algorithm and regret analysis. In Section 4, we
demonstrate performance of our algorithm on two synthetic
datasets. Finally, in Section 5 we conclude and discuss future
work.

2. PROBLEM SETUP

Let G = (V,E) denote an undirected graph with number of
nodes |V | = n. Let s : V → R denote a signal on G, and
S the set of all possible signals on G. Let L = D − W
denote the unnormalized Laplacian of the graph G, where
W = wij is the weight matrix and D is the diagonal ma-
trix with entries dii =

∑
j wij . We denote the eigenvalues

of L as 0 = λL1 ≤ λL2 ≤ · · · ≤ λLn , and the correspond-
ing eigenvectors as q1,q2, · · · ,qn. Equivalently, we write
L = QΛLQ′, where ΛL = diag(λL1 , λ

L
2 , · · · , λLn) and Q is

the n × n orthonormal matrix with eigenvectors in columns.
We denote transpose of a as a′, and all vectors are by default
column vectors.

We define a reward function on G as a linear combination
of the eigenvectors. For a given weight vector α ∈ Rn, the
reward function is defined as

fα = Qα.

The parameter α denotes the smoothness of the graph. If α
is such that large coefficients correspond to the eigenvectors
of the smaller eigenvalues and vice versa, then fα is a smooth
function of G. We denote the parameter that defines the true
reward function as α∗ and is unknown.
Signal Space: In the literature on sampling theory on graphs,
a function defined on the nodes is referred to as a signal.
We deviate from this convention and refer to f∗α as a re-
ward function and weights on the nodes as signals. Let
S ⊂ {s ∈ [0, 1]n :

∑n
i=1 si = 1} denote the set of signals.

Each s ∈ S signal is of the form si = 1/supp(s), for all i =
1, 2, · · · , n, where supp(s) denotes the number of positive

elements in s. The inner product of fα∗ and a signal s gives
average of supp(s) number of nodes. Note that |S| = 2n − 1.
For all 0 < w ≤ n, let S̃w = {s ∈ S : supp(s) = w}
denote the set of signals of width w. For a given w > 0,
we will be interested in a subset Sw ⊂ S̃w with n elements,
one corresponding to each node of the graph. We denote the
element in Sw associated with node i as swi . Let node i has
neighbors at {j1, j2, · · · jw−1}, then swi is of the form

swik =


1/w if k = i

1/w if k = ji, i = 1, 2, · · · , w − 1

0 otherwise.
(1)

If node i has more than w neighbors, there can be multiple
ways to define swi depending on the choice of its neighbors.
When w is smaller than degree of node i, in defining swi we
only consider neighbors with larger edge weights. If all the
weights are the same, then we select w neighbors arbitrarily.
In the following we use the phrase ‘probing with signal s’ to
mean that signal s is used to observe reward from nodes.
Signal cost: Let s̃ denote the graph Fourier transform (GFT)
of signal s ∈ S. Analogous to Fourier transforms of a contin-
uous function, GFT gives amplitudes associated with graph
frequencies. The GFT coefficient of a signal on frequency
λi, i = 1, 2 · · · , n is obtained by projecting it on qi, i.e.,
s̃ = Q′s, where s̃i, i = 1, 2, · · · , n is the GFT coefficient
associated with frequency λi. We define cost of probing the
graph G with a signal as sum of squares of its GFT coefficients
weighted by the corresponding frequency. Let C : S → R+

denote the cost function1. Then,

C(s) =

n∑
i=

λis̃
2
i = s̃′ΛLs̃ = s′Ls.

For a given matrix V , we denote V -norm of a vector a as
‖ a ‖V =

√
a′V a. ThenC(s) =‖ s ‖2L. As graph Laplacian is

a difference operator we can also write C(s) =
∑
i∼j(s(i)−

s(j))2, where the summation is over all the unordered node
pairs {i, j} for which node i is adjacent to node j. For signal
swi the above expression can be written after simplification as

C(swi ) =
w − 1

w2

(
1− 1

n

)
+

1

w2
. (2)

Note that the cost of w- width signal associated with node i
depends only on the width w. For w = 1, C(s1i ) = 1 for all
i = 1, 2, · · · , n. I.e., cost of probing individual nodes on the
graph is the same. Also note that C(swi ) is decreasing in w,
implying that probing a node is more costlier than a subset of
its neighbors.

We assume that by probing the graph with a signal yields a
reward/information2 that is proportional to the inner product

1In defining the cost we set W = A, where A is the adjacency matrix,
and made the graph symmetric by adding self loops on the nodes to make
their degree n

2In radar applications, this is through returned signal strength. In SNETs,
this is average measurement from the sensors
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of the signal used and the graph reward function fα∗ . Let
FG : S → R defined as

FG(s) =< s, Qα∗ >=< s̃, α∗ >

denote the reward obtained from signal s. Thus, each signal
is associated with linear reward and quadratic cost.

Let s∗ = arg maxs∈S FG(s) denote the signal that gives
the maximum. This is a straightforward linear optimization
problem if the function parameter α∗ is known. When α∗

is unknown we can learn the function through a sequence of
measurements.

2.1. Learning Setting and Performance Metrics

The learning setting is the following. The recommender uses
a policy π : {1, 2, · · · , T} → S that assigns at step t ≤ T ,
signal π(t). In each step t, the recommender obtains a noisy
reward such that

rt = FG(π(t)) + εt,

where εt is assumed to be R-sub Gaussian for any t. The
goal of the recommender is to learn a policy π that minimizes
the cumulative (pseudo) regret with respect to a policy that
always picks the best signal with respect to the parameter α∗

keeping the total cost incurred as low as possible.
The cumulative regret and the total cost of policy π is de-

fined, respectively, as

RT = TR(s∗)−
T∑
t=1

R(π(t)) (3)

CT =

T∑
t=1

C(π(t)).

The goal of the recommender is to learn a policy that mini-
mizes RT while keeping the CT as small as possible.

Remark 1 If we restrict the signal space to S = {ei : i =
1, 2, · · · , n}, where ei denotes a binary signal with ith com-
ponent set to 1 and all the other components set to 0, then
only one node is probed in each step. In this setting the cost
is the same for all the signals, i.e., C(ei) = 1 for all i. This
special case is studied in [12] where CT = T . We take this
setting as a benchmark to compare performance and cost of
our algorithm.

2.2. Assumptions:

We assume that the reward function satisfies the following
smoothness properties.
Global smoothness : As in [12] we assume that Λ-norm of
α∗ characterizes the smoothness of graph and is bounded. I.e.,

∃ c > 0 such that ‖ α∗ ‖Λ≤ c (4)

Here Λ = ΛL+λI , and λ > 0 is used to make ΛL invertible.
Before we state our next assumption we recall the definition
of effective dimension. Let λ = λ1 ≤ λ2 · · · ≤ λn denote the
diagonal elements of Λ.

Definition 1 (Effective dimension [12]) Given T , effective
dimension is the largest d such that:

λd(d− 1) ≤ T

log(T/λ+ 1)
.

Note that effective dimension depends on T . It characterizes
the number of non-negligible dimensions in which solution of
penalized least-squares (used in the alogrithm) may lie.
Local smoothness: The global assumption implies that the
rewards of the neighbors are similar. We localize this no-
tion around the optimal node and assume that the average re-
ward of neighbors of the optimal node varies smoothly with
respect to the reward of the optimal node. Let s∗w ∈ Sw de-
note w−width signal associated with the optimal node.

∀ w ≤ g, |FG(s∗w)− FG(s∗)| ≤ c/(λd+1 − w), (5)

where λd+1 is the eigenvalue corresponding to the effective
dimension and g denotes degree of the optimal node. Note
that Assumption (5) is made only for the optimal node. The
average reward from a larger neighborhood of optimal node
can degrade considerably and often not a good choice.

3. ALOGRITHM

We present an algortihm similar to LinUCB [17] and Spec-
tralUCB [12] for regret minimization. The main difference
between our algorithm and these algorithms comes from the
enlarged signal space, which allows us to observe average re-
ward from a subset of neighbors of each node in each time
step. As we noted earlier, a single node probe provides more
information about the node than a multi-node probe. On the
other hand a multi-node probe is less expensive. Our goal is
not only to minimize the regret but also to minimize the total
cost. We tradeoff this conflicting requirement by switching
from multi-node to single node signals as the learning pro-
cess progresses. In particular, we split the time horizon into
J stages, and as we move from state j to j + 1 we use more
costly signals, which corresponds to using signals of smaller
widths. The algorithm uses the signals of different widths in
each stage as follows: Stage j = 1 · · · , J consists of time
steps from 2j−1 to 2j − 1 and uses j-width signals only.

At each time step t = 1, 2, · · · , T , we estimate the value
of α∗ by using l2-regularized least square as follows. Let
{si := π(i), i = 1, 2, · · · , t} denote the signals selected till
time t and {ri, i = 1, 2, · · · , t} denote the corresponding re-
wards. The estimate of α∗ denotes as α̂t is computed as

α̂t = arg min
α

t∑
i=1

[s′iQα− rt]
2

+ ‖ α ‖2Λ .
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Fig. 1. ER graph: Cumulative regret and cost gain

Algorithm 1 MixingUCB
1: Input:
2: G: the graph, T : number of steps
3: λ, δ: regularization and confidence parameters
4: R, c: Upper bound on noise and norm of α
5: Initialization:
6: d→ arg max{d : (d− 1)λd ≤ T/ log(1 + T/λ)}
7: V0 ← ΛL + λI, S0 ← 0, r0 ← 0
8: for j = 1→ J do
9: for t = 2j−1 → min{2j − 1, T} do

10: St ← St−1 + rt−1s̃t−1

11: Vt ← Vt−1 + s̃t−1s̃′t−1

12: α̂t ← V −1
t St

13: βt ← 2R
√
d log(1 + t/λ) + 2 log(1/δ) + c

14: st ← arg maxs∈ SJ−j+1
s̃′α̂t + βt ‖ s̃ ‖V −1

t

15: end for
16: end for

We have the following result for our strategy of progressively
switching from inexpensive to expensive probing signals.

Theorem 1 Set J = dlog T e in the algorithm. Let λ be the
smallest eigenvalue of Λ. If < s̃, α∗ >∈ [−1, 1] for all s ∈ S
and assumptions (4) and (5) hold. Then, the cumulative regret
of the algorithm is with probability at least 1− δ bounded as:

RT ≤ (8R
√
d log(1 + Tλ) + 2 log(1/δ) + 4c+ 4)

×
√
dT log(1 + Tλ) + cd log2(T/λ+ 1),

where d is the effective dimension. Further, the total cost is
bounded as

CT ≤
J−1∑
j=1

2j−1

J − j + 1
≤ 3T

4
− 1

2
.

Proof Sketch: To prove the bound on the cumulative regret,
we first obtain a bound on instantaneous regret at time t that
involves sum of two parts. The first part is the difference be-
tween reward obtained from the signal of width w used at
time t and the reward from signal of width w corresponding
to the optimal node. The second part is the upper bound in As-
sumption (5). We then bound the cumulative regret by again
bounding the sums of each part. We use the same arguments
as in the proof of Theorem 1 in [12] and the definition of ef-
fective dimension and the fact that number of stages in our
algorithm is log T to bound both the summations.

To bound the cumulative cost, first note that the cost of
any signal of width w is upper bounded by 1/w. Then, the
bound follows from simple combinatorial arguments.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

time T

cu
m

ul
at

iv
e 

re
gr

et

Barabasi−Albert, N=250

 

 

MixingUCB
SpectralUCB
LinUCB

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

time T

cu
m

ul
at

iv
e 

co
st

Barabasi−Albert, N=250

 

 

MixingUCB
SpectralUCB
LinUCB

Fig. 2. BA graph: Cumulative regret and cost gain

Remark 2 Compared to the SpectralUCB algortihm, regret
bound of our algorithm increases by an amount cd log2(T/λ+
1), but still it is of the same order as d

√
T . However, the total

cost in our algorithm is smaller than that in SpectralUCB by
an amount of at least T/4 + 1/2, i.e., cost reduction is of the
order T is achieved by our algorithm.

4. EXPERIMENTS

We evaluate and compare our algorithm with the Spec-
tralUCB which is the state-of-art and outperforms its com-
petitors such as LinUCB on graphs with large number of
nodes. We set δ = 0.001, R = 0.01 and λ = 0.01.

We generated two graph models that are widely used to
analyze connectivity in social networks. First, we generated
Erdős-Rényi(ER) graph with each edge sampled with prob-
ability 0.02 independent of others. Second, we generated
Barabási-Albert(BA) graph with degree parameter 3. On the
edges of these graphs we assigned weights uniformly random.

We randomly generated a spare vector α∗ with a small
k << n and use it to linearly combine the eigenvectors of
the graph Laplacian to obtain the reward function f = Qα∗,
where Q is the orthonormal matrix derived from the eigen-
decomposition of the graph Laplacian. We ran our algorithm
on each graph in the regime T < n. In numerical plots dis-
played we used n = 250, T = 150 and k = 5. We repeated
the experiments 100 times and took the average.

From figures 1 and 2 we see that cumulative regret perfor-
mance of our algorithm is close to that of SpectralUCB, but
the cost gain is significantly higher.

5. CONCLUSION

We studied the problem of identifying region of interest in
a large area by formulating it as a bandit problem to learn
the maximum value of a signal on a graph. The arms of the
bandit are defined as graph signals which allows to observe
rewards from nodes and their neighbors. We showed that by
using the arms of different costs in a phased manner, where
cheaper arms are used in the initial steps and costlier ones at
later steps, the total cost of SpectralUCB can be significantly
reduced without changing the order of scaling of the cumula-
tive regret. We demonstrated that our algorithm provides cost
saving of at least 30% on Erdős-Rényi and Barabási-Albert
graph models without suffering much on cumulative regret..
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