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ABSTRACT

We propose a novel probabilistic inference approach that per-
mits predicting, well in advance, the intended destination of
a pointing gesture aimed at selecting an icon on an in-vehicle
interactive display. It models the partial 3D pointing track as
a Markov bridge terminating at a nominal destination. The
solution introduced leads to a low-complexity Kalman-filter-
type implementation and is applicable in other areas in which
early detection of the destination of a tracked object is bene-
ficial. Data collected in an instrumented vehicle illustrate that
the proposed technique can infer the intent notably early in
the pointing gesture. This can drastically reduce the pointing
task time and visual-cognitive-manual attention required.

Index Terms— human computer interactions, intent in-
ference, Kalman filter, bridging distributions.

1. INTRODUCTION

Interactive displays such as touchscreens are becoming an in-
tegrated part of the modern vehicle environment due to their
ability to present large quantities of data associated with In-
Vehicle Infotainment Systems (IVIS) [1, 2, 3]. They are also
easy to use via instinctive pointing gestures. However, us-
ing such displays entails dedicating a considerable amount of
attention that would otherwise be available for driving, with
serious safety implications [4, 5]. Additionally, due to driv-
ing or road conditions the user input can be highly perturbed,
leading to erroneous selections, which compromises the sys-
tem usability and results in further distractions.

In this paper, we propose a Bayesian intent inference ap-
proach that allows prediction, early in the pointing gesture,
of the intended destination on an in-vehicle interactive dis-
play. This can significantly reduce pointing time and effort.
Here, the pointing track is modelled as one of several Markov
bridges, each incorporating one of the possible destinations,
e.g. selectable icons on a GUI displayed on a touchscreen.
The path of the pointing finger, albeit random, must end at the
intended destination, i.e. it follows a bridge distribution from
its start point to the destination. By determining the likelihood
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Fig. 1. System block diagram with a complete pointing track
(dotted line) to select the highlighted GUI icon;tk > t1.

of the observed partial pointing trajectory being drawn from
a particular bridge, the probability of each possible destina-
tion is evaluated. A gesture tracking sensor, e.g. Leap Motion
(LM) [6], is used to produce the 3D track of the pointing fin-
ger as depicted in Fig. 1. This system is instrumented in a car
to collect data that is used to demonstrate the effectiveness
of the inference method. It is noted that in other application
areas, such as surveillance and defence, establishing the des-
tination of a tracked object (or the likelihoods of several pos-
sible destinations) can be valuable since it constrains the tar-
get trajectory and/or offers information on intent or possible
threats [7, 8, 9]. Thus, the proposed framework is applicable
outside the Human Computer Interactions (HCI) area.

2. PROBLEM STATEMENT AND RELATED WORK

Let {Di : i = 1, 2, ..N} be the set ofN nominal destinations,
e.g. GUI icons on an in-vehicle touchscreen. The objective is
to determine the probability of each of these items being the
intendeddestinationI of a pointing gesture, given a series of
k measurements,m1:k , {m1,m2, ...,mk}, i.e. to calculate
p(I = i | m1:k) for eachi = 1, 2, ..., N . Thekth observation
mk = [x̂tk

ŷtk
ẑtk

]′ at timetk is the pointing finger 3D co-
ordinates recorded by a gesture-tracker. It is derived from a
true, but unknown, underlying finger positionck; its velocity
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at timetk is notated aṡck. The most probable intended des-
tination attk is given by the Maximuma Posterioriestimate

i∗ = arg max
i=1,2,...,N

p(I = i | m1:k). (1)

With T being the total duration of the pointing task, the intent
inference attk can reduce the pointing time byT − tk.

The benefits of inferring the intended item on a GUI early
in a pointing task are widely recognised in HCI, e.g. [10, 11,
12, 13, 14, 15]. Most existing prediction algorithms focus
on pointing via a mouse in a 2D set-up. They aim to reduce
the pointing time and enable a facilitation strategy such as
increasing item size, adjusting activation area, etc. In [16],
2D–based predictors are shown to be unsuitable, or computa-
tionally demanding, for 3D pointing. For instance, the linear-
regression methods in [13, 14] assume that the the destination
is always located along the path followed by the pointing ob-
ject, which is rarely true in pointing gestures [16]. An intent
inference approach that models the pointing movement as a
Mean Reverting Diffusion (MRD) process was introduced in
[16, 17]. The technique proposed in this paper delivers su-
perior prediction results and is robust against changes in the
model parameters, unlike the MRD-based method.

Several destination-aware tracking algorithms exist, e.g.
[7, 8, 9], where a conventional tracker estimates the target
statefollowed by an inference filter to determine its destina-
tion. In [9], the monitored spatial area is discretized and a grid
of regions is defined. The tracked object can pass through a fi-
nite number of the predefined zones. In the 3D pointing tasks
considered here, hand movement is free and there are infin-
ite possible paths to the destination, making discretization a
burdensome task. Instead, in this paper we introduce a simple
low-complexity technique that does not impose trajectories
the user’s hand or any tracked object ought to follow.

3. PROPOSED BRIDGING MODEL

The location of the tracked object, i.e. the pointing finger-
tip, at the end of the pointing task is that of the intended
destinationDI . The hidden state of the pointing finger-tip
at timeT (i.e. at the end of the pointing task) is given by
sT = [c′T ċ′T ]′ = b̂I wherecT andċT are the true finger pos-
ition and velocity atT respectively;̂bi = [b′i v′

i]
′ such thatbi

denotes the known location of theith GUI icon in 3D andvi

is the finger velocity upon contact with the destination. Thus,
the probability ofDi being the intended destination is

p(I = i | m1:k) ∝ p(m1:k | I = i)p(I = i)

= p(I = i)
∫

p(m1:k | sT = b̂i)p(T | I = i)dT, (2)

sincep(m1:k | sT = b̂i) = p(m1:k | I = i, T );T is unknown.
The priorsp(I = i), i = 1, 2, ..., N , in (2) are independ-

ent of the current trajectorym1:k and can be learnt from con-
textual information such as selection history, GUI design, etc.

Henceforth, we assumep(I = i) = 1/N , although any avail-
able priors can easily be used. The objective, then, is to estim-

ate the integralAi =
∫

p
(
m1:k | sT = b̂i

)
p (T | I = i) dT

for each of theN possible destinations. A simple quadrature
approximation ofAi is given by

Ai ≈
∑

n

p(m1:k | sTn
= b̂i)p(Tn | I = i)ΔTn

(3)

whereΔTn
= Tn − Tn−1 and theTn are quadrature points,

ideally chosen to cover the majority of the probability mass
in p(T | I = i). More sophisticated quadrature or Monte-
Carlo estimates could also be employed. Here, we assume
uniformly arrival times priors within a time window determ-
ined from the completion time of 57 collected pointing tracks,
i.e. p(T | I = i) ∼ U(a, b). For simplicity, the finger velo-
city vi at the destination is assumed to be zero for alli. A
more realistic formulation is to integrate over possible values
of vi, but this is not considered here.

3.1. Motion and Observation Models

The state of the user’s fingersk = [c′k ċ′k]′ at timetk is as-
sumed to follow the linear Gaussian motion model

sk = Fksk−1 + εk (4)

with εk ∼ N (0, Qk). This general form permits many useful
motion models, the simplest of which is the (near) constant
velocity model, which is the solution of the continuous-time
stochastic differential equation

dst =

[
03 I3
03 03

]

stdt +

[
0v
3

σ

]

dWt

wheredWt is the instantaneous change of a standard Brownian
motion at timet, 03 is a3×3 zero matrix,I3 is a3×3 identity
matrix and0v

3 is a3 × 1 zero vector. The correspondingFk

andQk matrices in equation (4) are given byFk = M(Δk)
and Qk = R(Δk), where the time stepΔk = tk − tk−1

(which can vary, allowing asynchronous observations), and

M(p) =

[
I3 pI3
03 I3

]

, R(p) = σ2

[
1
3p3I3 1

2p2I3
1
2p2I3 pI3

]

, (5)

with σ setting the motion model state transition noise level.
The movements in thex, y andz dimensions are considered
to be independent from one another.

Observations are assumed to be a linear function of the
current system state with additive Gaussian noise, such that

mk = Hksk + ηk (6)

with ηk ∼ N (0, Vk). For the LM pointing finger-tip data,
we haveHk = [I3 03] for all k, since LM sensor makes
direct (noisy) observations of the true finger positionck. It is
noted that other motion models suitable for intent inference
that could be utilised in this framework. Those include the
destination-reverting models in [16] and the linear portion of
the perturbation removal model in [18].
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3.2. Hidden State and Likelihood Evaluation

Without conditioning information, the distribution of the hid-
den statesk given observationsm1:k in equations (4) and (6)
can be calculated by a standard Kalman Filter (KF) as per

p(sk | m1:k) = N
(
sk; μKF

k|k, ΣKF
k|k

)
,

with (using the ‘correct’ step of the Kalman filter),

μKF
k|k = μKF

k|k−1 + Kk(mk − HkμKF
k|k−1) (7)

ΣKF
k|k = (I6 − KkHk)ΣKF

k|k−1 (8)

Kk = Σk|k−1H
′
k

(
HkΣKF

k|k−1H
′
k + Vk

)−1

.

Here,μk|k−1 andΣk|k−1 are derived from the inferred system
distribution att − 1, given by the prediction step of the KF:

μKF
k|k−1 = FkμKF

k−1|k−1 (9)

ΣKF
k|k−1 = FkΣKF

k−1|k−1F
′
k + Qk. (10)

Whenk = 1, these quantities are given by the priors, so that
μKF

1|0 = μprior andΣKF
1|0 = Σprior. They represent prior know-

ledge of track start position, i.e.p(s1) ∼ N (μprior, Σprior).
In order to condition on the system state at the destination

arrival time,sT , it is necessary to evaluate the densityp(sT |
sk) for the current tracked object state (and arrival time). For
motion models derived from continuous-time processes, such
as the near constant velocity model used here, this is possible
by direct integration of the motion model (which is possible in
the linear time-invariant Gaussian case). For the near constant
velocity model, this is given by

p(sT | sk) = N (sT ; Mksk, Rk) ,

whereMk = M(T − tk) andRk = R(T − tk) from equation
(5), andT −tk is the time step between theT th andtk

th obser-
vations. Alternatively, forward or backward recursions can be
formed in terms ofF2:T , andQ2:T , which can be used with
discrete models without a continuous-time interpretation.

Subsequently, the conditionalpredictivedistribution ofsk

given thek − 1 observations and the intended destination
(which specifiessT ) can be shown to reduce to

p(sk | m1:k−1, sT ) = N (sk; μ∗
k, Σ∗

k) (11)

μ∗
k = μKF

k|k−1 + K∗
k(sT − Mkμk|k−1), (12)

Σ∗
k = (I6 − K∗

kMk)ΣKF
k|k−1. (13)

K∗
k = Σk|k−1M

′
k

(
M ′

kΣk|k−1M
′
k + Rk

)−1
.

This can be seen by analogy to the ‘correct’ step of the stand-
ard Kalman filter [19].

By taking the latest observation into account, thecorrec-
tion stage (taking account ofmk) can be shown to be

p(sk | m1:k, sT ) = N (sk; μk, Σk) (14)

whereμk = μ∗
k+K̃k(yk−Hkμ∗

k), Σk = (I6−K̃kHk)Σ∗
k and

K̃k = Σ∗
kH ′

k (HkΣ∗
kH ′

k + Vk)−1. This can also be seen by
analogy with the ‘correct’ step of the Kalman filter [19] noting
thatp(sk | m1:k, sT ) ∝ N (mk; Hksk, Vk)N (sk; μ∗

k, Σ∗
k).

Together with the standard KF, the above predict and cor-
rect steps allow the conditional distribution of finger position
to be calculated at the time of each observation, conditional
on the destination and arrival time. It remains to calculate

p(m1:k | I = i, T ) =
k∏

l=1

p(ml | m1:l−1, sT ) (15)

where it can be shown that

p(mk | m1:k−1, sT ) =
∫

p(mk | sk)p(sk | m1:k−1, sT )dsk

= N (mk; Hkμ∗
k, HkΣ∗

kH ′
k) . (16)

This is equivalent to the prediction error decomposition in the
KF [19]. Note that if likelihood calculation is the objective of
filtering, the corrective step in equation (14) is not required.

Using the likelihood in equation (15), the probability of
each nominal destination can be evaluated via equations (2)
and (3) upon arrival of a new observation. Algorithm 1 gives
a sequential implementation of the proposedmethod.

Algorithm 1 Sequential IntentInference

SetLi,n
0 = 1 for all i (targets),Tn (end times)

for (each observation)k = 1, ..., kmax do
for (each possible destination)i = 1...N do

for (each end time)Tn with n = 1, ..., nmax − 1 do
(In the following calculations,sTn = [b′i v′

i]
′)

– Calculateμi,n
k|k−1, Σi,n

k|k−1 via equations (9), (10)

– Calculate and storeμi,n
k|k, Σi,n

k|k via equations (7) and (8)

– Calculateμ∗,i,n
k , Σ∗,i,n

k via equations (12), (13)
– Calculate likelihood using equation (15):

Li,n
k = Li,n

k−1N
(
mk; Hkμ∗,i,n

k , HkΣ∗,i,n
k H ′

k

)

end for
Approximate integration overT via equation (3):
Li

k =
∑nmax−1

n=1 Li,n
k p(T = Tn|I = i)(Tn − Tn−1)

Let P̃ i
k = Li

k × p(I = i)
end for
Calculate target probabilities:p(I = i | m1:k) ≈ P̃ i

k/
∑

i P̃ i
k

end for

4. RESULTS

Here, we assess the performance of the proposed Bridging
Distributions (BD) predictor for 57 pointing tracks collected
in an instrumented car driven over various road types. The
data pertains to four passengers undertaking pointing tasks
to select highlighted GUI icons displayed on the in-vehicle
touchscreen. The layout of the GUI is similar to that in Fig. 1
with 21 selectable circular icons that are less than 2 cm apart.
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Fig. 2. Mean percentage of destination successful prediction.

Fig. 3. Gesture portion (in time) with successful prediction.

The predictor performance is evaluated in terms of its abil-
ity to successfully establish the intended iconI via the MAP
estimator in (2), i.e. how early in the pointing gesture the pre-
dictor assigns the highest probability to the intended GUI icon
I. This is depicted in Fig. 2 against the percentage of com-
pleted pointing gesture (in time) and averaged over all point-
ing tasks considered. Fig. 3 shows the proportion of the total
pointing gesture (in time) for which the predictors correctly
established the intended destination. To represent the level of
average prediction uncertainty, Fig. 4 displays the mean of the
uncertainty metric given byϑ(tk) = − log10 p (I = i|m1:k)
wherei is the true intended destination; it is expected that
ϑ(tk) → 0 astk → T for a reliable predictor.

In addition to the MRD model in [16], the Nearest Neigh-
bour (NN) and Bearing Angle (BA) benchmark methods are
also examined. In the former, theDi closest to the point-
ing finger position is assigned the highest probability and
vice versa; i.e. p (mk|I = i) = N

(
mk; bi, σ

2
NN

)
where

σ2
NN is the covariance of the multivariate normal distribu-

tion. In BA, P (mk|mk−1, I = i) = N
(
θk; 0, σ2

BA

)
where

θk = ∠ (mk − mk−1, bi) is the angle to target andσ2
BA is a

design parameter. It assumes that the cumulative angle to the
intended destination should be minimal. To ensure fair com-
parisons, design parameters that produce the best prediction
performance for the considered models are applied.

Fig. 4. Average log prediction uncertainty.

Fig. 2 shows that the introduced bridging-distributions-
based inference achieves the earliest successful intent predic-
tions. This is particularly visible in the first 75% of the point-
ing gesture where notable reductions in the pointing time can
be achieved and pointing facilitation regimes can be most ef-
fective. The performance gap between the various predict-
ors diminishes towards the end of the pointing task. An ex-
ception is the BA model where the reliability of the heading
angle as a measure of intent declines as the the pointing finger
gets closer to the target [16]. Fig. 3 shows that the BD ap-
proach delivers the highest overall correct predictions across
the pointing trajectories (NN and BA performances are sim-
ilar over the relatively large data set considered).

Fig. 5 illustrates that the proposed BD model makes cor-
rect predictions with significantly higher confidence through-
out the pointing task, compared to other methods. Overall,
Figs. 2, 3 and 4 demonstrate that the BD inference approach
introduced predicts, well in advance, the intent of an in-
vehicle pointing gesture, e.g. only 20% into the gesture in
60% of cases, which can reduce pointing time/effort by 80%.

5. CONCLUSION

This paper introduces a novel framework for low-complexity,
reliable intent inference. The early prediction of tracked
object (pointing finger) destination, can notably reduce the
pointing time and attention required to interact with in-vehicle
displays. As display interaction becomes increasingly preval-
ent in modern vehicles, small improvements in pointing task
efficiency such as reducing the pointing time by a few milli-
seconds via improved prediction quality, will have substantial
aggregate benefits and enhance safety, especially for a driving
user. This study serves as an impetus to further research and
calls for a full experimental study to identify pointing facilit-
ation techniques that best leverage the prediction results and
quantify the benefits on the overall user experience/safety.
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