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ABSTRACT

This paper considers the problem of passive detection with a mul-
tistatic radar system involving a non-cooperative illuminator of op-
portunity (IO) and multiple receive platforms. An unknown source
signal is transmitted by the IO, which illuminates a target of interest.
These receive platforms are geographically dispersed, and collect in-
dependent target echoes due to the illumination by the same IO. We
propose a generalized likelihood ratio test (GLRT) detector to deal
with the passive detection problem in the case of unknown noise
power. Moreover, a closed-form expression for the probability of
false alarm of this GLRT detector is given. Numerical simulations
demonstrate that the proposed GLRT detector generally outperforms
its natural counterparts.

Index Terms— Passive radar, multistatic radar, target detection.

1. INTRODUCTION

Passive radar has been a topic of long-standing interest. It can detect
and track a target of interest by exploiting readily available, non-
cooperative illuminators of opportunity (IOs) [1–3]. The superior-
ities of the passive radar over an active radar lie in its stealth ca-
pability and low cost. In addition, many IOs are available for the
passive radar, such as frequency modulation radio [4], digital video
broadcasting-terrestrial (DVB-T) [5, 6], and second generation digi-
tal video broadcasting-terrestrial (DVB-T2) sources [7].

Due to the non-cooperative nature of the IO, the transmitted sig-
nal is out of control and generally unknown to a passive receiver.
As a result, a conventional matched filter cannot be implemented
for detection. In many passive radar systems, an additional sepa-
rate channel, referred to as the reference channel (RC), is usually
equipped to collect the transmitted signal as a reference for passive
detection. For target detection, the reference signal can be heuris-
tically employed to conduct delay-Doppler cross-correlation opera-
tion with the surveillance signal [1, 8, 9]. Nevertheless, the perfor-
mance is significantly degraded when the reference signal is noisy.
To deal with the lack of knowledge of the signal transmitted from
the IO, a different approach is to employ multiple SCs in a passive
radar system [10]. Since these SCs collect target echoes due to the
illumination of the same IO, a correlation exists among the obser-
vations collected by the SCs, which can be employed for passive
detection. In the following, we focus on target detection in a pas-
sive radar system with multiple spatially separated receivers. Each
receiver collects target echoes, and serves as a SC for target detec-
tion. For a similar detection problem, a generalized coherence (GC)
is proposed in [11, 12].
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Fig. 1. Configuration of a multistatic passive radar system.

In this paper we develop a GLRT detector for the case of un-
known noise power in passive multistatic radars, since in practice
knowledge of the noise power is often unavailable a priori. It is
shown that the proposed GLRT detector is associated with all eigen-
values of the Gram matrix of the received signals. A closed-form
expression for the probability of false alarm of the proposed GLRT
detector is obtained, which indicates that the proposed GLRT detec-
tor exhibits a CFAR property with respect to the noise power. Sim-
ulation results demonstrate that the proposed GLRT detector outper-
forms the GC detector in cases where the number of receive plat-
forms is large (greater than 3).

Notation: Vectors (matrices) are denoted by boldface lower
(upper) case letters. Superscripts (·)T and (·)† denote trans-
pose and complex conjugate transpose, respectively. Ip stands
for a p-dimensional identity matrix. | · | represents the mod-
ulus of a complex number, ‖ · ‖ is the Frobenius norm, and
j =

√−1. det{·} and tr{·} denote the determinant and trace
of a matrix, respectively. Cm

n and (n)k are the binomial coeffi-
cient and the Pochhammer symbol, respectively. u(·) and Γ(·)
denote the Heaviside step function and Gamma function, respec-
tively. λK(A) ≤ λK−1(A) ≤ · · · ≤ λ2(A) ≤ λ1(A) denote the
ordered eigenvalues of K-dimensional matrix A. The (i, j)th entry
of matrix A is represented by Ai,j .

2. SIGNAL MODEL

Consider a passive multistatic radar system as shown in Fig. 1,
which involves one non-cooperative transmitter (i.e., IO) and K ge-
ographically dispersed receivers or sensors are deployed to collect
the echoes of a target of interest due to the illumination of the IO.

Denote by s(n) for n = 1, 2, . . . , N the unknown signal trans-
mitted by the non-cooperative IO in the discrete time domain. As-
sume that in each receiver the direct signal from the IO has been
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removed by using a directional antenna or some signal processing
techniques [8, 13]. The signal received in the kth receiver, denoted
by xk(n), can be expressed as [10]

xk(n) = αks(n− nk) exp(jΩkn) + wk(n), (1)

where n = 1, 2, . . . , N , k = 1, 2, . . . ,K, αk is a scaling parame-
ter that accounts for the target reflectivity as well as the propagation
effects in the kth receive channel, nk is the propagation delay of
the target returns accounting for both the distance between the IO
and the target and the distance between the target and the kth re-
ceive platform, Ωk is the normalized Doppler frequency in the kth
receive channel, and wk(n) is the Gaussian noise with zero mean
and variance σ2, i.e., wk(n) ∼ CN (0, σ2). Suppose that wk(n) for
n = 1, 2, . . . , N and k = 1, 2, . . . ,K are identically and indepen-
dently distributed (i.i.d.).

It is worth noting that the time delays (or frequency shifts) in the
different channels may be distinct due to the geographical disper-
sion of the receivers. In practice, a set of time delay and frequency
shift (e.g., (n1,Ω1)) in one of the received channels is selected as
a reference set. Notice that the differences in the time delay (or
frequency shift) between different received signals, instead of the
original time delays (or frequency shifts) in all received signals, are
of interest. These differences (n̆k, Ω̆k), where n̆k = nk − n1 and
Ω̆k = Ωk − Ω1, can be obtained by a cross-correlation operation
between xk(n) and x1(n) [8]. Therefore, for a specific reference set
(n1,Ω1), we can compensate for the time delays and Doppler shifts
of the received signals in all other channels. A similar compensation
operation can be found in [14] and [15]. In addition, although the
time delay n1 and the Doppler shift Ω1 in the reference set are not
known a priori, their estimates can be obtained using a grid search
as in conventional active radars [16].

Let the null hypothesis (H0) be such that the received data are
free of the target echoes and the alternative hypothesis (H1) be such
that the received data contain the target echoes. After compensating
for a particular hypothesised set, the passive detection problem can
be formulated in terms of the following binary hypothesis test{

H0 : xk = wk

H1 : xk = αks+wk

k = 1, 2, . . . ,K, (2)

where

• xk denotes the N × 1 sample vector in the kth receiver (N is
the number of samples);

• s is an N × 1 sample vector, whose elements are unknown
due to the non-cooperative nature of the IO;

• αk is an unknown scaling parameter that accounts for the
channel propagation effect and the target reflectivity;

• wk is an N × 1 noise vector in the kth receiver; they are
modeled as independent circular complex Gaussian processes
with zero mean and covariance matrix σ2IN , where σ2 de-
notes the noise power, i.e., wk ∼ CN (0, σ2IN ).

In practice, a long integration time is usually required in the passive
detection due to the weakness of the target returns. Hence, we im-
pose an assumption that N > K in the passive detection problem
(2).

3. GLRT DETECTION WITH UNKNOWN NOISE POWER

In this section, we consider the design of a GLRT detector for the
case of unknown noise power. The GLRT detector in this case is to

be obtained from

max{αk,s,σ
2} f(X|H1)

max{σ2} f(X|H0)

H1

≷
H0

ξ, (3)

where ξ is the detection threshold,

X = [x1,x2, . . . ,xK ], (4)

f(X|H1) and f(X|H0) are the probability density functions (PDFs)
of the received signals under H1 and H0, respectively, i.e.,

f(X|H1) =
1

πKNσ2KN
exp

(
− 1

σ2

K∑
k=1

‖xk − αks‖2
)
, (5)

and

f(X|H0) =
1

πKNσ2KN
exp

(
− 1

σ2

K∑
k=1

‖xk‖2
)
. (6)

It can be shown that the MLE of αk under H1 is [14, eq. (5)]

α̂k =
s†xk

s†s
. (7)

Inserting this MLE of αk into (5) leads to

max
{αk}

f(X|H1) =
1

πKNσ2KN

× exp

[
− 1

σ2

(
K∑

k=1

‖xk‖2 − s†XX†s
s†s

)]
.

(8)

The maximization of (8) with respect to s is equivalent to maximiz-

ing the Rayleigh quotient s†XX†s
s†s . This maximum value is exactly

the largest eigenvalue of XX†, i.e.,

max
{s}

s†XX†s
s†s

= λ1(XX†) = λ1(Φ), (9)

where
Φ = X†X. (10)

It is worth noting that the employment of the K-dimensional
matrix Φ instead of the N -dimensional matrix XX† in (9) is more
computationally effective in calculating the maximum eigenvalue.
In addition, it should be pointed out that there exists an ambiguity in
the estimation of the norm of the vector s. It means that ‖s‖ cannot
be uniquely determined. Nevertheless, this ambiguity does not affect
the GLRT.

Substituting (9) into (8) produces

max
{αk,s}

f(X|H1) =
1

πKNσ2KN

× exp

[
− 1

σ2

(
K∑

k=1

‖xk‖2 − λ1(Φ)

)]
.

(11)

It is easy to show that the MLE of the noise power under H1 is

σ̂2 =
1

KN

(
K∑

k=1

‖xk‖2 − λ1(Φ)

)
. (12)
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Substituting (12) into (11) yields

max
{αk,s,σ

2}
f(X|H1) =

[
eπ

KN

(
K∑

k=1

‖xk‖2 − λ1(Φ)

)]−KN

.

(13)
According to (6), we obtain the MLE of the noise power under

H0 to be

σ̂2 =
1

KN

K∑
k=1

‖xk‖2. (14)

Inserting (14) into (6), we have

max
{σ2}

f(X|H0) =

[
eπ

KN

K∑
k=1

‖xk‖2
]−KN

. (15)

Applying (13) and (15) to (3) and making an equivalent trans-
formation, we derive the GLRT detector as

Ξ =
λ1(Φ)∑K

k=1 λk(Φ)

H1

≷
H0

ξ, (16)

where ξ is a suitable modified version of the threshold in (3). Note
that in the equivalent transformation in (16) we have used the result

K∑
k=1

λk(Φ) = tr(Φ) =

K∑
k=1

‖xk‖2. (17)

In the particular case where K = 2, the eigenvalues of Φ can be
explicitly expressed as elementary functions of the received signals,
namely,

λ1(Φ) =
‖x1‖2 + ‖x2‖2 +

√
(‖x1‖2 − ‖x2‖2)2 + 4|x†

1x2|2
2

,

(18)
and

λ2(Φ) =
‖x1‖2 + ‖x2‖2 −

√
(‖x1‖2 − ‖x2‖2)2 + 4|x†

1x2|2
2

,

(19)
respectively. As a result, the test statistic Ξ in (16) for K = 2 can be
explicitly written as the following equivalent form:

Ξ̃ =
‖x1‖2 + ‖x2‖2 +

√
(‖x1‖2 − ‖x2‖2)2 + 4|x†

1x2|2
‖x1‖2 + ‖x2‖2

H1

≷
H0

ξ̃,

(20)
where ξ̃ = 2ξ.

For the purpose of having a deeper insight into the structure of
the proposed GLRT detector, we equivalently write (16) as

1
1

KN

∑K
k=2 λk(Φ)

λ1(Φ)
H1

≷
H0

ξ̄, (21)

where ξ̄ is a suitable modified version of the threshold in (16). Inter-
estingly, it can be seen from (12) and (17) that the MLE of the noise
power under H1 is

σ̂2 =
1

KN

K∑
k=2

λk(Φ), (22)

which is exactly the denominator of the test statistic in (21). This is
to say, the test statistic in (21) can be interpreted as the maximum
eigenvalue normalized by the estimated noise power.

3.1. Performance Analysis

In order to complete the construction of the test in (16), we should
provide an approach to set the detection threshold. To this end,
a closed-form expression for the probability of false alarm of the
GLRT detector in (16) is derived, which can be employed to com-
pute the detection threshold for any given probability of false alarm.
According to [17], the probability of false alarm of the GLRT detec-
tor in (16) can be expressed as

PFA = 1− Γ(KN)M−1
0

K∑
k=1

(N+K−2k)k∑
j=N−K

KN−j−2∑
i=0

βk,j C
i
KN−j−2 (−k)i

Γ(KN − j − 1)

×
{
g1(ξ, j, i)

[
u

(
ξ − 1

K

)
− u

(
ξ − 1

k

)]

+ g2(k, j, i)u

(
ξ − 1

k

)}
, (23)

where 1
K

≤ ξ ≤ 1,

M0 =
K∏

k=1

[(K − k)!(N − k)!], (24)

g1(ξ, j, i) =
1

j + i+ 1

[
ξj+i+1 −K−(j+i+1)

]
, (25)

and

g2(k, j, i) =
1

j + i+ 1

[
k−(j+i+1) −K−(j+i+1)

]
. (26)

Note that the coefficients βk,j in (23) can be obtained by the follow-
ing equality [18]:

d

dξ
det{Θ(ξ)} =

K∑
k=1

(N+K−2k)k∑
j=N−K

βk,jξ
j exp(−kξ), (27)

where the (n,m)th entry of Θ is given by

Θn,m(ξ) = γ(N −K + n+m− 1, ξ), (28)

with the lower incomplete Gamma function γ(n, x) defined as

γ(n, y) =

∫ y

0

tn−1 exp(−t)dt. (29)

It is easy to determine βk,j in (27) by using most symbolic softwares
such as Maple and Matlab (see [19, Algorithm 1]).

In the particular case where K = 2, the probability of false
alarm of the GLRT detector in (20) can be explicitly written in terms
of elementary functions, i.e.,

PFA = 1− Γ(2N)

Γ(N)Γ(N − 1)
[h(ξ)− h(0.5)] , (30)

where 1
2
≤ ξ ≤ 1, and

h(y) =

N−2∑
k=0

Ck
N−2(−1)N−2−k

×
(

y2N−k−3

2N − k − 3
− 4

y2N−k−2

2N − k − 2
+ 4

y2N−k−1

2N − k − 1

)
.

(31)
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Fig. 2. Probability of false alarm of the GLRT detector in (16) versus
the detection threshold for N = 8.

It can be seen from (23) that the probability of false alarm of the
GLRT detection in (16) is independent of the noise power. It im-
plies that the GLRT detection in (16) possesses the desirable CFAR
property against the noise power. As to the detection performance,
unfortunately, a closed-form expression for the detection probability
of the GLRT detector in (16) is intractable.

4. SIMULATIONS RESULTS

In this section, numerical simulations are conducted to validate the
above theoretical analysis and illustrate the performance of the pro-
posed detector. The signal s transmitted from the IO is sampled from
CN (0, I). The signal-to-noise ratio (SNR) is defined by

SNR = 10 log10

1
KN

∑K
k=1

(
|αk|2

∑N
n=1 |s(n)|2

)
σ2

. (32)

For comparison purposes, the GC detector and the ED are intro-
duced. The GC detector can be represented as [20]

ΛGC = 1− det{Φ}∏K
k=1 ‖xk‖2

H1

≷
H0

ζGC, (33)

where ζGC is the detection threshold. The ED can be expressed as

ΛED =
1

σ2

K∑
k=1

‖xk‖2
H1

≷
H0

ζED, (34)

where ζED is the detection threshold. Note that a prior knowledge of
the noise power has to be used to set the threshold of the ED.

The probability of false alarm of the proposed GLRT detector
in (16) as a function of the detection threshold is presented in Fig.
2, where N = 8 and σ2 = 1. It can be seen that there is exact
agreement between the theoretical results and the simulation results.

Performance comparisons are made in Fig. 3, where PFA =
0.01. It is demonstrated in Fig. 3(a) that the proposed GLRT detector
in (16) performs better than the GC detector, when multiple receivers
(more than 3) are used. Additionally, the proposed GLRT detector
in (16) also outperforms the ED, when the number of the receivers
is large (e.g., K ≥ 6 in this example). In Fig. 3(b) with K = 8, we
can see that the proposed detector outperforms the GC, and provide
performance better than the ED in the region of high SNR.
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Fig. 3. Performance comparisons

5. CONCLUSION

We examined the problem of passive detection with a multistatic
radar system consisting of a non-cooperative IO and multiple
geographically distributed receive platforms. Due to the non-
cooperative nature of the IO, the signal transmitted from the IO
is unknown. A GLRT detector is proposed for the case in which
both the transmitted signal and the noise power are unknown. It has
the form of the ratio of the maximum eigenvalue to the sum of all
eigenvalues of the Gram matrix or covariance matrix of the received
signals. The proposed GLRT detector can also be transformed as
an equivalent form of the maximum eigenvalue of the Gram matrix
normalized by the estimated noise power. The probability of false
alarm of the proposed GLRT detector is derived, implying that the
proposed GLRT detector possesses the desirable CFAR property
against the noise power. Simulation results demonstrate that the per-
formance of the proposed GLRT detector increases as the number
of receive platforms or/and data samples increases. In particular,
when the number of receive platforms is large, the proposed GLRT
detector outperforms the ED and the GC detector.
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