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Abstract—A method inspired by Generalised Canonical Cor-
relation (GCC) has been proposed as a detection statistic for
multistatic passive radar when a noise-free reference signal is
unavailable [1]. The GCC statistic can be expressed as the
largest eigenvalue of the Gram matrix of the received signals.
It is derived from a suitably formulated generalised likelihood
ratio test (GLRT). The Gram matrix is drawn from a Wishart
distribution: a central Wishart distribution in the target-absent
case and a non-central Wishart distribution when the target is
present. Numerical computation using the eigenvalue distribution
is fraught with difficulties [2]. Exact theoretical expressions
involve ratios of products of factorials which soon defeat attempts
at straightforward implementation in double-precision floating
point. On the other hand, standard approximations, such as the
Tracy-Widom distribution [3], are inaccurate when a low false-
alarm rate is required.

In this paper, we present a new method to accurately com-
pute probabilities using standard double-precision floating-point
arithmetic. This allows practical application of the GCC statistic
to CFAR detection in passive radar scenarios where the number
of samples is large (104–107), and the number of receivers is
small (2–5).

Index Terms—Passive radar, signal detection, double precision

I. INTRODUCTION

In multistatic passive radar, multiple transmitters and/or
receivers are used to locate targets in the environment. Un-
like typical radar, passive radar uses existing transmitters in
the environment, which makes the radar system a passive
system [4], [5]. The intended purpose of these transmitters
is not necessarily for radar, but for some other service such
as telecommunication or geolocation. Hence, they are termed
illuminators of opportunity [6].

Illuminators of opportunity, to be useful for passive radar,
should, like any radar illuminator, have a high transmission
power to provide adequate range and a ‘thumb-tack-like’
waveform ambiguity function to resolve closely spaced targets.
The growing interest in passive radar can be explained at
least in part by the proliferation of high-quality illuminators,
including terrestrial and satellite digital TV, radio and cellular
data services.

A passive radar has several benefits over an active radar. It
emits no radiation of its own, so it can be operated covertly.
Without the need of its own high-power transmitter, passive
radar can be small and light. Targets which optimise their radar
cross-section (RCS) against monostatic radar may have higher
RCS in the multistatic geometry of a passive radar network.

The benefits of multistatic passive radar come at the cost of
an increased detection complexity. Not knowing the transmit-
ted signal means the usual detection techniques used for mono-
static radar cannot be used. Several methods have been pro-
posed for passive multistatic detection, such as the subspace
projection method [7], the sample covariance method [8],
generalised coherence [9], [10] and a method inspired by
generalised canonical correlation, which we refer to simply
as GCC [1].

Here, we analyse GCC, as proposed by the present authors
with Howard in [1]. The detector is formed as a generalized
likelihood ratio test (GLRT) with one hypothesis being that a
target is present (H1), and the other that the target is absent
(H0). The GLRT reduces to calculation of the largest eigen-
value of the Gram matrix constructed by stacking together
the received signal vectors. We focus on the case of a single
transmitter and M receivers. We let L be the number of
received (complex-valued) samples in each received signal
vector. Usually, L � M . The Gram matrix is an M × M
matrix. Under the null (target-absent) hypothesis, the Gram
matrix can be viewed as a scatter matrix drawn from a
complex, central Wishart distribution.

The problem lies in the numerical computation of thresh-
olds. If the exact expression of Kang & Alouini [11] is directly
transcribed for computer calculation, it can only be computed
feasibly when both L and M are small. These expressions
involve ratios of products of factorials that soon overwhelm
the capacity of double-precision floating-point numbers. In its
application to calculation of thresholds for passive radar [2],
Hack et al. note that “direct calculation. . . was infeasible
for. . .L ≥ 10 without variable precision arithmetic.” Even
then, the threshold was only “successfully calculating. . . for
L ≤ 100 when [M ] ≤ 6.”

On the other hand, if L and M are large, then the Tracy-
Widom (TW) distribution [3] becomes an accurate approx-
imation of the distribution of the largest eigenvalue. For
fixed values of L and M , the fidelity of this approximation
diminishes as the required false-alarm rate goes to zero.

In this paper, we deal with the case where the parameters
L and M are not small enough that a direct implementation
of the exact distribution can be used, yet not large enough
that the TW-derived methods are accurate. When the number
of receivers is modest, in the range 2-5, we show that the
calculation of a single threshold can be calculated accurately
in only a few seconds using standard double-precision floating-
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point arithmetic even when the number of samples is large, i.e.,
> 50 000.

In Section II, we introduce a simple signal model for a
passive multistatic radar with a single transmitter and multiple
surveillance-only receivers. The GCC statistic is introduced for
the GLRT in Section III. In Section IV, the exact distribution
function is presented along with its asymptotic approximation
by the Tracy-Widom distribution. In Section V, the method
to evaluate the distribution is presented. The new method is
tested via numerical simulation on scenarios of different sizes
in Section VI. Finally, receiver operating curves (ROC) are
presented for the application to passive radar detection in order
to demonstrate its practicality and superior accuracy.

II. SYSTEM MODEL

We consider a multistatic passive radar scenario with a
single transmitter and M receivers. The possibility of a single
target is considered which scatters the transmitted signal and is
received at each of the receivers. The transmitted signal s(t) is
complex valued at baseband. The position of the transmitter, t,
and receivers, rm, are known whereas the presence of a target
at position, p, and velocity, v, is not. In the received signals,
the direct-path signal is assumed not to be present. That is, they
are considered to be purely surveillance signals. In practice,
this can be achieved by ensuring an antenna (or antenna array)
null is steered towards the transmitter, or by blocking the
direct-path intentionally with some other structure, natural or
artificial.

If the target is present, the received signal therefore depends
on the target position and velocity via two derived parameters,
the time delay, τm, and frequency shift, ωm. The delay, τm, is
the time taken for the signal to travel between the transmitter
and the mth receiver via the target and has the value

τm =
1

c
(‖p− t‖+ ‖p− rm‖) (1)

where c is the speed of light. Similarly, the frequency shift for
a given velocity is the sum of the closing rates of the target
to the transmitter and receiver, so that

ωm =
ω0

c
vT
(

p− t

‖p− t‖
+

p− rm
‖p− rm‖

)
(2)

where ω0 is the centre frequency of the transmitted signal.
Hence, the mth received signal has the form

xm(t) = µms(t− τm)ejωmt + ηm(t) (3)

where µm represents the received amplitude, incorporating the
effects of path length and target RCS, and ηm(t) is receiver
noise.

We wish to test the hypothesis that a target is present at
the postulated position and velocity. Processing begins by
correcting for the postulated delays τm and Doppler shifts ωm
so that when a target exists at that location,

x̃m(t) = xm(t+ τm)e−jωmt = µms(t) + ξm(t), (4)

where ξm(t) are the similarly modified noise components.

The received signals are sampled at an appropriate sampling
frequency. L samples are used to form a vector x̃m at
each receiver. The modified noise ξm(t) is also assumed to
be additive white Gaussian noise and independent at each
receiver. Likewise, s is the vector of samples of s(t) over
the corresponding time interval.

The null hypothesis is that the received signal contains only
noise

H0 : x̃m = ξm. (5)

Under the alternative hypothesis, there exists a target at
position p with velocity v such that x̃m has the form

H1 : x̃m = µms + ξm. (6)

III. THE GCC STATISTIC AND THE GLRT

Formulating the likelihoods under each of the hypotheses
and maximising the likelihood for the alternate hypothesis with
respect to µm, we find [1] that the generalised (log) likelihood
ratio is proportional to the largest eigenvalue, λ1, of the Gram
matrix

G = ΦHΦ

where Φ = (x̃1, . . . , x̃M ) and the superscript H denotes
the Hermitian transpose. The eigenvalue λ1 is therefore a
generalised likelihood ratio test (GLRT) statistic. Its similarity
to a statistic originally proposed by Horst [12], [13] for
generalised canonical correlation prompts us to refer to it as
the ‘GCC’ statistic.

IV. EXPRESSIONS FOR THE DISTRIBUTION UNDER H0

Using the distribution of the GLRT statistic under the null
hypothesis, a CFAR detector can be derived. In the case of
H0, the Gram matrix arises from a complex, central Wishart
distribution. We will evaluate two approaches to modelling
the distribution of this matrix’s largest eigenvalue: the exact
expression of Kang & Alouini [11], denoted ‘KA’, and the
asymptotic approximation that results from the distribution of
Tracy & Widom [3], denoted ‘TW’.

We begin our treatment of detection thresholds by examin-
ing the approximation by the TW distribution. For complex
samples, the distribution is Tracy-Widom of order 2 and
the cumulative distribution function (c.d.f.) is denoted F2(x).
El Karoui [14] showed that the true distribution of the largest
eigenvalue, Fλ1

(x), converges in a certain sense to F2(x)
when L and M become large. Specifically, he found that

|Fλ1(σ̃LMx+ µ̃LM )− F2(x)| ≤ Ce−cxL−2/3 (7)

for constants C and c and sequences µ̃LM and σ̃LM [15]. It
is known that the right tail of F2(x) is of exponential order
exp(−4x3/2/3) [16]. Therefore, it can be seen that, for any
fixed L and M , the error bound in (7) will overwhelm the tail
probability as x becomes large.

The TW distribution is itself “somewhat tricky to compute
numerically” [15]. In this paper, it’s calculated with the help
of RMLab [17], which is a Matlab-based software package for
the calculation of the TW distribution.
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TABLE I
COMPUTATIONAL LIMITS IN DOUBLE-PRECISION FLOATING POINT

ARITHMETIC OF DIRECT IMPLEMENTATION OF THE KA EXPRESSION, (8).

Sensors (M ) Maximum samples (L)

2 98
3 71
4 57
5 47

The KA expression, on the other hand, is exact for finite
L and M . For L ≥ M (the case of interest to us), it can be
given in closed form as [11, Corollary 2]

Fλ1
(x) = α detΨ(x) (8)

where the elements of Ψ(x) are defined as

ψij(x) = γ(τ + i+ j − 1, x),

τ = L−M , γ(·, ·) is the lower incomplete gamma function,
which can be expressed as

γ(n, x) = (n− 1)!

(
1− e−x

n−1∑
k=0

xk

k!

)
,

and
α =

1∏M
m=1(L−m)!(M −m)!

.

These expressions are well suited for direct numerical
calculation only for small values of L and M . For larger
values, the products of factorials quickly produce extremely
large numbers and the sum term requires a large dynamic
range to be accurately calculated. Depending on the number of
receivers, the maximum number of samples is limited by the
maximum value that can be represented in double-precision
floating-point, i.e., roughly 10308. By using this upper bound,
the number of samples is seen to be quickly limited as the
number of sensors increases. A summary of these limits is
shown in Table I.

V. HIGH-ACCURACY THRESHOLD CALCULATION

The primary objective in computing thresholds with high
accuracy and over a wide range of L and M is to stave off
floating-point overflow. It can be seen from (8) that the value
of α quickly vanishes as L or M increases but at the same time
the elements in Ψ(x) become huge. We resist this tendency
by regrouping terms.

First, we can decompose α so that

α = α̃ detD−1 det∆−1

We set
∆ = diag[(L−M)!, . . . , (L− 1)!].

We entertain a choice for the remaining elements in the
decomposition. Either we set

α̃ =
1∏M

m=1(M −m)!
and D = I (9)

or we set

α̃ = 1 and D = diag[1, . . . , (M − 1)!]. (10)

For small values of M , say 2–5, and for L � M , it will
become apparent that there’s not much practical difference
between these options. For larger values of M , the latter choice
is to be preferred.

If we similarly decompose Ψ(x) so that

Ψ(x) = DΨ̃(x)∆

then it’s clear that we can write

Fλ1
(x) = α̃ det Ψ̃(x). (11)

An alternative decomposition of Ψ(x), in which the contri-
bution of the incomplete gamma function is made explicit, is
that

Ψ(x) = K ◦ [1−Q(x)] (12)

where K and Q(x) are M×M matrices defined with elements

kij = (τ + i+ j − 2)!

and

qij(x) = e−x
τ+i+j−2∑
k=0

xk

k!
, (13)

1 is the matrix of all 1s and the ◦ operator represents the
Hadamard (entry-wise) product.

Using an elementary, pseudo-commutative property of
Hadamard products and diagonal matrices—see, for example,
[18, Lemma 5.1.2]—(11) and (12) can be combined so that

Fλ1(x) = α̃ det{K̃ ◦ [1−Q(x)]} (14)

where K = DK̃∆. According to our choice of (9) or (10),
we consequently have the elements of K̃ being

k̃ij =
(τ + i+ j − 2)!

(τ + j − 1)!
or k̃ij =

(τ + i+ j − 2)!

(τ + j − 1)!(i− 1)!
,

respectively.
Now consider the matrix Q(x). Observe from (13) that

0 ≤ qij(x) ≤ 1 but that the terms evaluated within the sum
can be very large. To avoid overflow, the e−x term is moved
inside the sum. The xk/k! term can also be large enough to
cause overflow. Therefore, the summands are evaluated in the
logarithm, i.e., we write

qij(x) =

τ+i+j−2∑
k=0

xφ(x,k) (15)

where
φ(x, k) = k − x+ log(k!)

log x

and log(·) denotes the natural logarithm.
We make two observations about speeding up the compu-

tation of Fλ1
(x) as just described, under the assumption that

many evaluations may be needed and for large values of x
(corresponding to small values of false-alarm rate). First, at
the expense of additional memory usage, the logarithms of the
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Fig. 1. Comparison of the theoretical (KA), empirical (Monte Carlo) and
asymptotic (TW) c.d.f. for L = M = 2.
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Fig. 2. Relative error of the c.d.f. computed using the KA expression and TW
approximation compared to the empirical c.d.f. for M = 2 and L = 10 000.

factorials can be pre-computed. Second, the summands in (15)
should be computed from k = τ + i+ j − 2 down to k = 0,
so that the summation can be halted early if the summands
become insignificant.

VI. RESULTS

A. Accuracy of Distribution Expressions

We now evaluate the accuracy of the expressions for the
distribution of the maximum eigenvalue. They are compared
to results derived from 100 000 realisations of a Monte Carlo
simulation of the null-hypothesis scenario. When the target is
absent the received signal contains only noise. Accuracy is
examined for sample size L varying from 2 to 10 000.

In Figure 1, the c.d.f. of the maximum eigenvalue, as
evaluated using the KA expression, (8), is compared with the
TW approximation, (7), and with the empirical c.d.f. obtained
from Monte Carlo simulation. Here, L =M = 2 and the noise
variance is set to one. The distribution is plotted over a wide
range of values of λ1.

With a small number of samples and sensors, the closed-
form KA expression for c.d.f. is simple to evaluate. The
empirical c.d.f. shows good agreement. Meanwhile, the TW
asymptotic approximation is visually close to the true c.d.f.
for x > 5 but diverges noticeably for smaller values of x.

For scenarios that are more pertinent to passive radar, the
new expression, (14), is used to evaluate the true (KA) c.d.f.
Error relative to the empirical c.d.f. is presented in Figure 2
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Fig. 3. ROC comparison of threshold-setting techniques for M = 2 and
L = 10 000 when a target is present at an SNR of -5 dB.

for M = 2 and L = 10 000. Note that, because L > 90,
the naı̈ve implementation of KA would result in floating-point
overflow. Compared to the L = 2 case, the accuracy of TW
is much improved, though still clearly inferior to KA.

B. Application to Passive Radar

To further test the capabilities of the new KA expression
in (14) and its applicability to passive radar, a receiver oper-
ating curve (ROC) is computed. We study a scenario where a
target is present at a signal-to-noise ratio (SNR) of -5 dB.

Detection is performed using the GLRT. The threshold is
set by three different techniques and the results compared.
To test the TW approximation and the new KA expression,
the threshold is set for an intended false-alarm rate (though,
especially for TW, this may not correspond to the realised
false-alarm rate). This is compared with a threshold that is
set empirically from the Monte Carlo simulation used for
Figure 2. By whatever means the threshold is set, the cor-
responding empirical detection probability is computed from
a Monte Carlo simulation of 100 000 realisations.

The empirical probability of detection is plotted against the
intended false-alarm rate in Figure 3. When the threshold is
set using the TW approximation, we see that the detection
probability is noticeably lower, by up to 5% over the range
considered, when the intended false-alarm rate is below 10−2.
That is, there is a tendency with the TW approximation to set
the threshold too high. On the other hand, good agreement is
observed with the empirical data when the new KA expression
is used to set the threshold.

VII. CONCLUSIONS

The computation of detection thresholds using the GLRT
in multistatic passive radar with surveillance-only receivers is
known to be computationally challenging. We have presented a
practical technique for accurately computing false-alarm prob-
abilities in standard double-precision floating-point arithmetic
that enables a CFAR detector to be implemented. Through
numerical simulations, we demonstrated that this approach
yields a higher detection probability than is achieved when
the Tracy-Widom distribution is used as an approximation.
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