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ABSTRACT 

 

Sensor nodes are embodiment of IoT systems in 

microscopic level. As the volume of sensor data increases 

exponentially, data compression is essential for storage, 

transmission and in-network processing. The compression 

performance to realize significant gain in processing high 

volume sensor data cannot be attained by conventional lossy 

compression methods. In this paper, we propose ASDC 

(Adaptive Sensor Data Compression), an adaptive 

compression scheme that caters various sensor applications 

and achieve high performance gain. Our approach is to 

exhaustively analyze the sensor data and adapt the parameters 

of compression scheme to maximize compression gain while 

optimizing information loss. We apply robust statistics and 

information theoretic techniques to establish the adaptivity 

criteria. We experiment with large sets of heterogeneous 

sensor datasets to prove the efficacy. Nonlinear lossy 

compression (Chebyshev) is extensively considered as the 

standard technique as well as experimental result with 

frequency domain compression like Discrete Fourier 

Transform (DFT) is shown as future scope of further 

improvement. 

 

Index Terms— Adaptive compression, information 

theory, IoT, sensor, Chebyshev 

 

1. INTRODUCTION 

 

With the proliferation of IoT (Internet of Things), sensors are 

omnipresent; from inside human body to deep inside Pacific 

Ocean. Such huge volumes of sensors generate high amount 

of data. Storage, transmission and processing of such high 

volume data pose potentially destruction performance and 

scalability risk. In order to harvest IoT applications like smart 

energy management, elderly monitoring, e-health care, data 

volume is to be reduced such that utility is optimized while 

maximizing the compression. Extensive research works 

already proposed various data compression methods 

particularly for sensor data [1, 2, 3]. Specifically, model-

based approaches that compress sensor data by established 

approximation methods outperform traditional data 

compression methods [3]. Among various model-based 

compression techniques, the nonlinear model of Chebyshev 

approximation capture the inherent properties of large 

number of sensor data more accurately [4]. However, 

traditional notion of compression to minimize redundant 

information is not optimal for sensor data, as the contextual 

information also plays major role in analytics purpose. For 

example, unusual pattern in ECG data (may be indicative of 

arrhythmia) contain more analytic insight than regular ECG 

data; somebody’s high energy consumption at odd hours 

(midnight) detected through smart meter readings is more 

interesting for mining and knowledge discovery. In 

continuation with that philosophy that is also supported by 

classical information theory, our proposed method ASDC 

extracts the useful or interesting information from sensor data 

and adapts the parameters like threshold selection, block-size 

estimation for Chebyshev compression to yield maximum 

compression gain while sacrificing insignificant information 

loss [17]. 

In this paper, we mainly focus on sensor data 

compression through Chebyshev polynomial. However, 

simpler techniques like frequency-domain compression using 

DFT (Discrete Frequency Transform) is also briefly studied, 

which would be our scope of future work. 

The paper is organized as follows. In Section 2, we 

describe the sensor information extraction scheme. We 

briefly introduce Chebyshev approximation and describe our 

proposed scheme ASDC in Section 3. In Section 4, we 

discuss extension of ASDC to make it suitable for quasi-

periodic signals like ECG. Results are shown in Section 5. 

Finally, we conclude in Section 6. 

 

 

2. SENSOR DATA ‘USEFUL’ INFORMATION 

EXTRACTION 

 

We follow the hypothesis that unusual pattern or anomalous 

events incur more useful information particularly in sensor 

data analytics, we employ robust outlier detection method to 

detect the interesting points in sensor datasets. Then, we 

quantify the amount of useful information as sensor 

importance score.  
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2.1. Useful Information Extraction 

 

For robust outlier detection, masking effect and swamping 

effect need to be minimized [5, 8]. Available literature mostly 

concentrates on minimizing one of the effects [5, 7] due to 

the fact that a particular dataset (say stock market or smart 

meter reading) is prone to only one of the effects [19]. 

However, as we deal with heterogeneous (sensor) datasets, 

we need to minimize both the effects according to the dataset 

statistical properties [6]. Through kurtosis measurement (�), 

we are able to estimate the spread of probability distribution 

� of sensor dataset ����, which helps us to apply appropriate  

outlier detection technique.  
 

2.2. Important Point Detection and Minimizing false 

alarms 
 

In order to ensure minimum false alarm, both masking and 

swamping effects are to be minimized, It is shown in [8], 

Hampel identifier provides outstanding outlier detection 

when � can be approximated to random observation, which 

we interpret as ���� < 3. Particularly MAD (Median Absolute 

Deviation)-analysis provides high neutralization to masking 

effects [8]. For minimizing swamping effect, which is 

predominantly observed when ���� 	≥ 3, Rosner filtering is 

a judicious choice. Rosner filtering is a class of generalized 

extreme Studentized deviate (ESD) test for univariate 

multiple outlier detection [9].  It overcomes the limitation of 

k-means clustering, the Grubbs test and the Tietjen-Moore 

test by only requiring an upper bound rather a specific outlier 

suspected number k [9]. Consider � be the useful information 

in sensor dataset � and � be the normal (uninteresting) part; 

� = 	� ∪ � and using Hampel/ Rosner filtering based on 

kurtosis measurement, we find out �. 
 

2.3. Quantification: Sensor Importance Score 

 

Our idea of useful information measurement is the amount of 

difficulty to infer �, when only given �, i.e. the information 

leakage transfer function Υ�,�:  � → � and ��= 

∑ �����.� ���� �
 !"#�.$

|#|
�&�
∑ ���'�.� ���� �

 !"(�.$
|(|
�&�

=	)���)�'�  [10].  

In [11], such metric is derived using mutual information 

*��, ��, which would mostly indicate the maxima. In order to 

enhance the measurement accuracy, two-sample 

Kolmogorov-Smirnov (KS) test is performed. When KS-test 

accepts null hypotheses, statistical compensation +'	 = 1. 

When KS-test rejects null hypotheses, we propose L1-

Wasserstein metric between �, � ",-,�$	to estimate statistical 

misfit or compensation �'	 = ,-,�, where  

,�,� ≔ INF2∈4��,��5 |6 − 8|
	
4 9:�6, 8�, 6 ∈ �, 8 ∈ � 

Logically, sensor importance score	��-	� = ��	 ∧ �'	. 
Algebraically, �-	 =	��	 × �'	. With �-		=0, 5@, we scale �-	 

as �-	 	⟼ 	 B�-	 	× 5C: �-	 = =1, 5@, with high magnitude of 

�-	 signifies more useful information in �.  
 

3. FUNCTIONAL ARCHITECTURE OF ASDC 

 

Below in fig. 1, we depict the functional architecture of 

ASDC, where adaptive module is the key for performance 

optimization and compression function E = F�G�, where G 

is the set of adjustable parameters. For Chebyshev 

compression EH = F�I, Γ�, where I denotes the block size 

and		Γ is the threshold value. Optimality in compression gain 

and information loss is achieved by adapting these two 

parameters [17]. Adaptation module as shown below consists 

of: 1. Block size optimization and 2. Threshold adaptation to 

deliver the optimized compression performance. For other 

types of compression technique like DFT, G consists of 

different elements like number of frequency components to 

be allowed. 

 
Figure 1. Functional architecture of Chebyshev-ASDC 

3.1. Chebyshev Compression: A Brief 
 

In Chebyshev compression, compressed data �K is 

represented as linear combination of Chebyshev polynomials 

[3, 4]: L�M� = 	∑ NO . PQ�M�ORSORT , where: 

U =	VM −	SWXY Z .
Y

S[X, normalized to [-1, 1], simply, cosine 

look-up table, NO is the Chebyshev polynomial co-efficient at 

degree i. Polynomial generation is done for every block I	and 

for a defined threshold Γ	=13@: �K =	 \L�M�, L�M� 	≥ 	Γ0,																	]^_]  (1) for 

each block. Quantization (digitization) is done for non-zero 

�K for storage, transmission purpose. 

 

3.2. Optimal Block Size 

 
Conventional compression methods are designed upon the 

approximations of data under the norm `a.This maximum 

error constraint is violated in Chebyshev compression due to 

fixed pre-assigned block size B. We propose following 

algorithm to find the optimal block size Ib, which is 

dynamically adapted based on useful information differential 

(Δ�-	� as: 

Ib =	 \d]efd_Mgh	�IOiOj = 2.IOiOj�,						Δ�-	 ≠ 0			IOiOj 																																																						]^_]  
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Where, IOiOj  is the initial block size and Δ�-	 =	 m�|n|	 −
	�|n|WX	m. The inherent effect of larger block size is to enhance 

compression gain as well as information loss. Whenever, 

differential useful information is non-zero for different block 

sizes, we consider larger block size. Here, we exploit the 

Asymptotic Equipartition Property (AEP) considering large 

number of samples available with (almost) equal probability 

of taking all the useful information score values at each block 

size and it helps us to achieve typical set.  
 

3.3. Threshold Adaptation: Compression Gain-

Information Loss Trade-off 

 

Threshold (Γ) plays a major role in Chebyshev compression 

particularly for compression gain enhancement. Threshold 

acts as a clipping parameter as described in (1). Optimal 

determination of threshold is required for compression gain- 

information loss trade-off.  

 Let compression code L:	Θ	 →	∪qrX s0,1tq assigns each 

data points �	��X, �Y, … , �S� ∈ 	Θ	�Θ = 	 s0,1ti�, a finite 

sequence of 1s and 0s to create the (Chebyshev) code word 

L(��. The condition for decompressibility of L:  
∑ 	Ρ���|L���|-∈	w ≥	−∑ 	Ρ���^gxYΡ���-∈	w , where, Ρ��� is the 

probability distribution on the compression space Θ.	From 

theory of large deviation, the optimality condition is :  
∑ 	Ρ���|L���|-∈	w = 	−∑ 	Ρ���^gxYΡ���-∈	w , when Ρ��� =

	2[S)�-� ≈ 	2[|�|)��� (according to the notion of useful 

information), which indicates that in order to achieve 

optimality in compression gain, Γ (Threshold) → 	∞. Large 

magnitude of Γ results the decompressed sequence would 

have type outside the set �, i.e. the probability of information 

loss �{|� → 1. So the trade-off criteria is computed 

as: limi→	a
X
i ^gxY{|��� = 	−	�`���|�� (from Sanov’s theorem), 

where �� is the reconstruction (decoded) of raw signal � and 

KL is the Kullback-Leibler divergence. Let’s consider 

threshold �Γ�: Γ = 	e. 2"����	[	��∈��	$; As ∑{|��� =
	∑ X

i |�� − 	�	|SiRX  and logarithm is a convex function, so, Γ =
	e. 2"����	[	��∈��	$	is the optimal choice and constant factor c is 

dependent on dispersion factor to satisfy {| → 0. We consider 

e = e]M^�ℱ�, where ℱ (Fano factor) = 
��
�� . 

 

3.4. Results 

 

Firstly, we depict the performance of ASDC for fixed block 

size (Ib = 512� with adaptive threshold as shown in fig. 2. All 

the experiments are done with publicly available sensor 

datasets like REDD [14], BLUED [15], Physionet [16]. Smart 

meter data is taken from REDD/ BLUED and ECG datasets 

are taken from Physionet. We consider smart meter datasets 

for initial experimentation. Five independent household 

smart meter data is chosen for first set of experimentation. 

We observe that significant performance gain in terms of 

lesser information loss and higher compression gain is 

achieved when block-size optimization (dynamic block-size) 

is employed (fig. 3) [17]. ASDC-const (ASDC with constant 

block size) Chebyshev compression provides better 

performance than standard Chebyshev, while block-size 

optimal Chebyshev (ASDC-adaptive) outperforms the 

ASDC-const. 

 

 
 

Figure 2. depicts (a) the compression gain, (b) loss factor 

variation of constant block-size Chebyshev-ASDC. 

Compression gain (
����	��	���	������

����	��	����������	������� and loss 

factor % (
��������������	�������[�������	�������

�������	������� )*100 for smart 

meter data, show considerable compression gain and lesser 

loss factor by adaptive ASDC.  

 

 
Figure 3. (a) Compression gain, (b) Loss factor, improvement 

with adaptive threshold along with optimal block size of 

Chebyshev-ASDC (ASDC-adaptive). 

In fig. 4, original and reconstructed signal are shown. 

a 

a 

b 

b 
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Figure 4. Original and reconstructed signal for House-1. 

 

We extend our experiment with other different sensor 

signals as depicted in fig. 5, where EEG, ECG, accelerometer 

data are considered. We note that except ECG signal (signal 

indexed 6, 7, 8), others show good performance gain.  

 
 

Figure 5. Performance gain comparison of ASDC for 

heterogeneous sensor data. It shows that few signals 

particularly of ECG class do not respond well. 

 

4. EXTENTION OF ASDC 

 

It is experimentally observed that sensor data with repeating 

sequences, i.e. signals with quasi-periodic components do not 

conform to the high performance gain of ASDC particularly 

due to the fact that the above mentioned derivation outlier is 

point-based. So the useful information score determination is 

not appropriate, more precisely outlier detection technique 

(Section 2.1) for quasi-periodic signals are prone to high false 

positive errors (swamping effect) when the hybrid approach 

of point-outlier detection is implemented. Consequently, we 

consider adaptive window-based discord discovery (AWDD) 

as the outlier detection technique [18] for quasi-periodic 

signals like ECG and rest of the analysis (Section 2.2 to 3.3) 

remains same. Below in fig. 6, we show the significant 

improvement of compression performance. 

 

Figure 6. Improved compression performance with the help 

of extended ASDC with AWDD for quasi-periodic signals. 

 

Truncation of Fourier series expansion (i.e. DFT in 

discrete domain) of the sensor data function is 

comprehensively produce compressed signal. By removing 

insignificant co-efficients (|co − efficients	|	with ≤ Γ�£¤), 

substantial compression gain can be achieved. However, the 

Γ�£¤  (threshold) is to be dynamically adjusted to optimize 

the performance. Fig. 7 shows the compression gain and 

deviation loss for different class of sensor data types. We 

assumed constant Γ�£¤ that makes compression gain similar 

but variation in loss. Our future scope of work is to derive the 

optimality on Γ�£¤ . DFT-based compression would be 

simpler for practical implementation and suffices the real-

time compression requirements for relevant applications. 

 

 
Figure 7. Compression performance of DFT-based 

compression. 

 

5. CONCLUSION 

 

In this paper, we proposed a novel sensor data compression 

scheme that outperforms conventional lossy compression 

scheme in significant margin. The proposed scheme Adaptive 

Sensor Data Compression (ASDC) exploits inherent 

statistical and information theoretic properties to maximize 

the compression gain while optimizing the data 

reconstruction loss. As, no single lossy compression provides 

better performance than others for every kinds of sensor 

datasets [3], our adaptive method of signal property based (if 

quasi-periodic, use discord discovery; else use robust point 

outlier technique) and information theoretic (Sanov’s 

theorem based) approach proved to be the show stopper. We 

choose Chebyshev compression as the lossy compression 

technique, other lossy compressions like Grouping and 

Amplitude Scaling [1] can also be considered. We have 

already experimented with DFT-based compression, which 

will not only provide lower cost solution, but also its 

frequency-domain characteristics is independent of the 

intricacies of complex temporal analysis.  Our future work is 

to experiment with larger set of sensor data to establish the 

universal efficacy of our proposed scheme with other relevant 

lossy compression techniques. 
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