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ABSTRACT

Constructing accurate models that represent the underlying
structure of Big Data is a costly process that usually constitutes
a compromise between computation time and model accuracy.
Methods addressing these issues often employ parallelisation
to handle processing. Many of these methods target the Sup-
port Vector Machine (SVM) and provide a significant speed
up over batch approaches. However, the convergence of these
methods often rely on multiple passes through the data. In
this paper, we present a parallelised algorithm that constructs
a model equivalent to a serial approach, whilst requiring only
a single pass of the data. We first employ the Kernel Recursive
Least Squares (KRLS) algorithm to construct several models
from subsets of the overall data. We then show that these mod-
els can be combined using KRLS to create a single compact
model. Our parallelised KRLS methodology significantly im-
proves execution time and demonstrates comparable accuracy
when compared to the parallel and serial SVM approaches.

Index Terms— Kernel Regression, Data Mining, Kernel
Recursive Least Squares, Support Vector Machine

1. INTRODUCTION

The amount of data available continues to increase at an ex-
ponential rate [1] and fast implementations of data mining
primitives are essential to make sense of them. Parallelism
is a common technique used to scale algorithms to Big Data
problems. Unfortunately, many standard data mining tech-
niques have dependencies which prevent them from being eas-
ily parallelised on a distributed platform. As a result, standard
machine learning algorithms such as SVM and kernel based
least-squares optimisers are often not considered suitable for
large data mining problems.

One method for performing a parallel computation whilst
minimising communication overhead is to split the data up
into several subsets, each of which is used to create an inde-
pendent submodel. If the learning algorithm is appropriate,
the individual submodels are a good representation of their
respective subsets, but not necessarily a good representation
of the entire data set. The core issue facing this technique then
becomes how to combine the submodels into a single model.

In general, works which take this approach, such as [2–7],
achieve a high speedup over batch algorithms and have little
I/O overhead between nodes. However, this approach often
has the following drawbacks: degradation in model accuracy,
particularly as the number of processing nodes increases [5–7];
multiple passes of the data are required to guarantee conver-
gence [2–4]; and the resultant model is much larger than one
resulting from a batch approach [7]. To our knowledge, none
of these methods provide a guarantee of the accuracy of the
model for a single pass of the data.

An alternative method is to use a distributed platform to
construct a single model. This approach differs from the sub-
model approach in that there is often a single model that is
accessible from all computing nodes. The nodes then collec-
tively optimise the model. A notable example is the paper
by Chang et. al. [8]. The authors report a large speedup over
LIBSVM [9]. The main drawback of this approach is the
communication overhead, which accounts for over 50% of the
running time on some datasets for a large number of machines.

In this paper, we take the approach of creating submodels
and then combining them. We show that a closed form solu-
tion for combining individual Kernel Recursive Least Squares
(KRLS) [10] submodels can be achieved. This result can then
be simplified to a more compact form by applying the KRLS
algorithm an additional time. We show that the final model
is close to a serial, single module solution and only requires
one-pass through the data. A theoretical analysis of the com-
bined model is provided, along with empirical analysis of its
performance and accuracy in relation to standard benchmarks.

The main contributions of this work can be summarised
as follows: 1) a technique to combine multiple kernel based
regression models on distributed nodes without requiring inter-
node communication or multiple passes over the data; 2) a
theoretical bound on the approximation error in the repre-
sentation of the kernel matrix while using this technique; 3)
empirical analysis of its performance on benchmark datasets
when compared to other batch and distributed techniques.

2. KERNEL RECURSIVE LEAST SQUARES

In this section we briefly survey the Kernel Recursive Least
Squares (KRLS) algorithm [10].

5500978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



2.1. Kernel-based non-linear prediction

Consider a set of N observations in the form of input/output
pairs {xn, yn}, n ∈ [1, N ], where the input entries xn are
vectors of length M . We refer to this data set as the training
data. In a typical time series prediction scenario, the vector
xn consists of the few data samples that directly precede the
value yn. Given a new input entry, x, kernel-based methods
predict the corresponding output as:

ŷ =

N∑
i=1

k(xi,x)αi , (1)

where k(·, ·) is a positive-definite kernel function.
Kernel-based prediction models thus consist of two types

of data: a set of training input vector examples, which we refer
to as the dictionary, and the corresponding coefficients α. The
coefficients are typically calculated such that the prediction is
as accurate as possible for the entire training data, in the least-
square sense. In other words, the vector of the coefficients
α = [α1, α2, . . . , αN ]T is defined as:

α = argmin
γ
‖y −Kγ‖2 , (2)

where y is the vector of the training output entries, y =
[y1, y2, . . . , yN ]

T , and K is the matrix with coefficients
Kij = k(xi,xj). Calculating the kernel for two input entries
(xi, xj) is equivalent to calculating the dot product of the
vectors (φ(xi), φ(xj)) where φ is a mapping function which
transforms an input vector to a vector of features in a high-
dimensional feature space. Thus, Equation (2) is equivalent to
solving the following problem:

α = argmin
γ

∥∥y −ΦTΦγ
∥∥2 , (3)

where Φ is the matrix that concatenates the vectors of features
corresponding to every input entry, Φ = [φ(x1), φ(x2), . . . ,
φ(xN )]. Note that the function φ is implicit, as it is determined
by the choice of a kernel, and it is never calculated in practice.
This property is often referred to as the “kernel trick” [11].

2.2. Kernel-recursive least-squares

The Kernel-recursive least-squares (KRLS) algorithm [10] is
an online algorithm which computes an approximate solution
to Eq. (3). The main advantage of KRLS is that the complexity
of the obtained prediction model does not depend directly on
the size of the dataset but rather on how redundant this dataset
is. This is made possible by the fact that the training entries
may be linearly dependent in the feature space, i.e., matrix Φ
can be approximated as:

Φ ≈ Φ̃ AT , (4)

where Φ̃ consists of a subset of the columns of Φ and matrix
A expresses the columns of Φ as linear combinations of the

columns of Φ̃. In other words, KRLS selects a subset of input
entries and computes the prediction model coefficients, α̃,
defined by:

α̃ = argmin
γ

∥∥∥y −ΦT Φ̃γ
∥∥∥2 = argmin

γ

∥∥∥y −AT K̃γ
∥∥∥2 ,

(5)
where K̃ is the matrix of the kernel values for the subset of
training entries. The solution to Equation (5) is given by:
α̃ = K̃−1(ATA)−1ATy.

In the KRLS algorithm the approximation defined by
Eq. (4) is controlled by a parameter, ν: the larger ν, the smaller
the dictionary and the larger the error. The approximation error
made on matrix K can be expressed as: K = AK̃AT + R,
where R is a matrix of residual errors. Engel et al. [10] showed
that the l2 norm of R is bounded by Nν, where the l2 norm of
a matrix is defined as: ‖R‖2 = maxu:‖u‖2=1 ‖Ru‖2.

3. DISTRIBUTED KRLS LEARNING

In the case where KRLS is used on large training data sets,
it may be advantageous to divide the learning operation
into multiple processes running in parallel. The training
data set is divided into subsets, X = [X1, ...,XK] and
y = [y1

T , ...,yK
T ]T , and sent to individual computation

nodes for processing. Each node creates a model represented
by a dictionary Dk, and the corresponding weights, αk. These
models must then be combined with each other to form a
unique model representing the whole training data set. In this
section we show how multiple KRLS models can be combined
so that the data contained in the entire training set is optimally
approximated.

3.1. Concatenating KRLS models

The simplest way to combine KRLS models is to form a dic-
tionary which concatenates the dictionary entries from every
individual model, i.e., D̄ = [D1, . . . , DK ]. A new set of
weights corresponding to dictionary D̄, ᾱ, must then be cal-
culated so that the prediction error is minimal for the entire
training data set. In other words, denoting Φ̄ as the dictionary
D̄ mapped into the feature space, we have:

ᾱ = argmin
γ

∥∥y −ΦT Φ̄γ
∥∥ ≈ argmin

γ

∥∥y − ĀΦ̄T Φ̄γ
∥∥ ,

(6)
where Ā is the diagonal-block matrix comprised of the A
matrices for every KRLS model, Ā = diag ([A1, . . . ,AK ]).
The closed-form solution for ᾱ is therefore given by:

ᾱ =
(
Φ̄T Φ̄

)−1 (
ĀT Ā

)−1
ĀTy . (7)

We now show that the weights ᾱ can be calculated without
using the entire training data set, y. In other words, y does not
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Fig. 1: High level view of the DistKRLS learning method.

have to be stored after the parallel training stage. Using the
block-diagonal structure of Ā, Eq. (7) can be rewritten as:

ᾱ =
(
Φ̄T Φ̄

)−1
ȳ . (8)

where ȳ =
[
ŷT
1 , . . . , ŷ

T
K

]T
and ŷk =

(
AT

k Ak

)−1
AT

k yk .

Recalling that the weights obtained for an individual model
are given by αk =

(
ΦT

k Φk

)−1(
AT

k Ak

)−1
AT

k yk, we have

ŷk =
(
ΦT

k Φk

)
αk , (9)

where Φk denotes the dictionary Dk mapped in the feature
space. Therefore, the coefficients of ȳ simply correspond
to the data predicted by applying each KRLS model to its
dictionary entries.

3.2. Combining KRLS models using the KRLS algorithm

From Eq. (8), we see that ᾱ is the solution to the following
least-square problem:

ᾱ = argmin
γ

∥∥∥ȳ − Φ̄
T
Φ̄γ
∥∥∥2 = argmin

γ

∥∥ȳ − K̄γ
∥∥2 . (10)

Comparing this equation with Eq. (3), we observe that this
problem is equivalent to estimating a model for the training set
data comprised of: a) the entries of the concatenated dictionary,
D̄; and b) the vector ȳ. Therefore, the KRLS algorithm can
be used to estimate this model. This leads to the distributed
KRLS (DistKRLS) learning method summarised in Fig. 1: 1)
The original training data set is divided into chunks that are
sent to K parallel computing nodes; 2) The KRLS algorithm
is used to derive a prediction model for each data chunk; 3) A
new training data set is formed of the dictionary D̄ and vector
ȳ; 4) The KRLS algorithm is used to estimate a model for the
new data set.

The advantage of this method is that it may lead to a more
compact model than that defined by D̄ if there exists redundan-
cies between entries of this dictionary. The drawback however
is that discarding some dictionary entries may increase the
prediction error. Let us define the solution after a second
application of KRLS as ᾰ, with a corresponding compact ker-
nel matrix, K̆, and expansion matrix, Ă. Matrices K̆ and Ă
provide an approximation of K̄, as follows:

K̄ = ĂK̆ĂT + R̆ , (11)

where R̆ is the residual error introduced by the second appli-
cation of the KRLS algorithm. Similarly, K̄ and Ā provide an
approximation of K and we can write:

K = ĀK̄ĀT + R̄ = Ā(ĂK̆ĂT + R̆)ĀT + R̄ . (12)

Thus, the l2 norm of the total residual error, RT , in the repre-
sentation of K is:

‖RT ‖2 =
∥∥∥R̄ + ĀR̆ĀT

∥∥∥
2

≤ Nν + ψN̄ν , (13)

where ψ is the maximum singular value of ĀT Ā, N̄ is the
length of ȳ and the second line invokes the bound of the error
introduced by the KRLS algorithm [10].

4. RESULTS

In this section, the accuracy and performance of the DistKRLS
learning algorithm is shown. Synthetic benchmarks for re-
gression and classification are used for training and test data.
For comparison, results for the non-parallel KRLS (hence-
forth referred to as batch KRLS) algorithm is provided along
with SVM and Cascade SVM (CSVM) [2], the latter of which
is a technique to implement SVM on a distributed comput-
ing platform. CSVM was implemented in a standard binary
tree configuration and was only allowed a single pass of the
data. Readers should note that if multiple passes were allowed,
CSVM would converge to the batch SVM solution but would
suffer a performance penalty, which would likely be a linear
increase in execution time.

4.1. Accuracy

In order to demonstrate the modelling accuracy of DistKRLS,
the algorithm is tested on both a regression and a classification
benchmark. DistKRLS and CSVM were tested while varying
the number of splits in the training data. If splits = 1, then this
refers to either batch KRLS or SVM. Otherwise, splits refers
either to the number of submodels created by DistKRLS, or to
the number of submodels created at the first layer of CSVM.

For the regression test, the Mackey-Glass Chaotic Time
Series [12] (MG) was used with the chaotic parameter set to 30.
The data was configured for a single step prediction problem
with a time embedding of 7. In this test, 20 datasets were
generated. Each dataset size was 2× 105, 20% of the data in
each set was used as a test set. For all learning algorithms, the
Gaussian kernel was used, κ(xi,xj) = exp(−γ‖xi − xj‖2),
with γ = 0.5. The configuration for batch and DistKRLS was
ν = 10−4. SVM and CSVM used ε-SVR [13], provided by
LIBSVM [9], with ε = 0.01. The same parameters were used
for DistKRLS and CSVM as their batch counterparts. Figure 2
shows the average mean squared error (MSE) and model size
for each algorithm across the 20 sets. The error bars denote
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Fig. 2: Mean squared error (MSE) on the test set and model
size for each algorithm.

1 8 64 256 1024
60

70

80

90

100

A
cc

ur
ac

yR
V

L

NumberMofMSplits

MadelonMTestMAccuracy

CSVM

DistKRLS

1 8 64 256 1024
100

1000

10000

70000

N
um

be
rM

of
MS

V
s/

D
V

s

NumberMofMSplits

MadelonMModelMSize

CSVM

DistKRLS

Fig. 3: Classification accuracy on the test set and model size.

one standard deviation above and below the average. Note that
“model size” refers to the number of support vectors or dictio-
nary vectors found by the algorithm. Clearly, DistKRLS and
batch KRLS perform almost identically, while the accuracy
of CSVM degrades slightly with increasing numbers of splits.
Specifically, the maximum increase in average MSE between
all configurations of DistKRLS and KRLS was 9.09%, while
for CSVM it was 160% when compared to SVM. Also, the av-
erage model size of KRLS and DistKRLS is more than 150×
smaller. This also means the computational cost of subsequent
predictions is over 150× smaller.

For the classification test, the Madelon Classification
Data [14] (MAD) was used. In this test, 40 datasets were
generated. Each set contained 2 × 105 examples and was
generated with 4 informative features and 4 redundant features,
and 20% of the data in each set was used as the test set. The
Madelon input data was normalised prior to training/prediction,
and each output label was either -1 or 1. The exponential
kernel was used again with γ = 0.5. KRLS and DistKRLS
was used with ν = 0.7. SVM and CSVM used C-SVC [11],
also provided by LIBSVM [9], with C = 50. Figure 3
shows the classification accuracy and model size between
DistKRLS and CSVM over the 40 sets. The error bars denote
one standard deviation above and below the average. Using
the classification data, the difference between our approach
and CSVM is much more pronounced. While SVM works
very well, the accuracy of CSVM deteriorates significantly
while requiring over 40× more support vectors than the KRLS
approaches. Specifically, the greatest difference in average
classification accuracy between DistKRLS and KRLS was
0.30%, compared with 15.1% between CSVM and SVM.
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Fig. 4: Training time.

4.2. Performance

In this section, the execution time of the algorithms is con-
sidered. The Madelon dataset experiments were run on a
Ubuntu Linux system with 2x Intel(R) Xeon(R) E5506 CPUs
at 2.13GHz and 48GB of RAM. The Mackey-Glass experi-
ments were run on a 16 node cluster running Centos Linux.
MATLAB was used to run all tests, however, LIBSVM was
used to implement all SVM algorithms and a C library was
created to implement all KRLS algorithms. MATLAB’s paral-
lel computing toolbox was used to provide parallelism for the
DistKRLS and CSVM.

Figure 4 shows the training time for each of the differ-
ent algorithms. CSVM achieves a significant performance
increase over SVM which continues to steadily improve with
an increasing number of splits. DistKRLS performs best for
either 8 or 32 splits, but approaches batch KRLS as the number
of splits increases. This is due to an increase in computation
time for combining the KRLS submodels. Compared to batch
KRLS, the best average speedup achieved by DistKRLS is
22.7×. In all but 3 configurations, DistKRLS has lower av-
erage execution time than CSVM. Based on the results, it is
likely that a continued increase in splits would cause CSVM
to execute faster than DistKRLS.

5. CONCLUSION

This paper has presented a new method of combining multiple
models of kernel based regression algorithms. This technique
removes dependencies between models which allows it to be
distributed among many machines. In this work, the KRLS
algorithm is used for training submodels as it provides a com-
pact, near optimal least squares solution. Speedups of up
to 22× are achieved with negligible degradation in accuracy
compared to batch KRLS.
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