
ONLINE LOCAL GAUSSIAN PROCESS FOR TENSOR-VARIATE REGRESSION:
APPLICATION TO FAST RECONSTRUCTION OF LIMB MOVEMENTS FROM BRAIN

SIGNAL

Ming Hou, Yali Wang, Brahim Chaib-draa

Laval University, Canada

ABSTRACT

Tensor-variate regression approaches have been spotlighted
over the past years, due to the fact that many challenging re-
gression tasks in the real world involve in high-order tenso-
rial data. However, these approaches are often computation-
ally prohibitive, which limits the predictive performance for
large data sets. In this paper, we propose a computationally-
efficient tensor-variate regression approach in which the la-
tent function is flexibly modeled by using online local Gaus-
sian process (OLGP). By doing so, the large data set is effi-
ciently processed by constructing a number of small-sized GP
experts in an online fashion. Furthermore, we introduce two
efficient search strategies to find local GP experts to make ac-
curate predictions with a Gaussian mixture representation. Fi-
nally, we evaluate our approach on a real-life regression task,
reconstruction of limb movements from brain signal, to show
its effectiveness and scalability for large data sets.

Index Terms— Tensor, Tensor-Variate Regression, On-
line Local Gaussian Process.

1. INTRODUCTION

Over the past years, tensor-variate regression approaches have
been investigated due to the fact that the data sets in many
real-life regression tasks are often associated with high-order
tensorial structures [1, 2, 3, 4, 5]. Among these approaches,
tensor-variate Gaussian process regression (tensor GP) pro-
posed in [3] is promising because, instead of linear assump-
tions in [1, 2, 4, 5], tensor GP can flexibly model the non-
linearity of the tensorial data by using the powerful Bayesian
nonparametric Gaussian process (GP). However, the compu-
tation load caused by GP, O(N3), often makes tensor GP
computationally prohibitive in practice, since the number of
the training points N is often required to be quite large in the
context of tensor-variate regression applications (where the
data points in high-order tensor space tend to be sparse due to
the curse of dimensionality [6]).

In this paper, we propose a computationally-efficient ten-
sor GP framework by introducing online local Gaussian pro-
cess (OLGP) for tensor-variate regression (we denote our ap-
proach as tensor OLGP). Compared to tensor GP in [3], our

tensor OLGP takes advantage of OLGP by assigning the data
points to a number of the small-sized GP experts in an online
fashion, thus naturally reducing the computation burden for
large data sets. We complete this by two efficient search strat-
egies, namely input-based and input-output-based search, to
find the local GP experts in order to maintain the predictive
accuracy. Finally, we demonstrate the effectiveness of our
tensor OLGP on a large-scale tensor regression task, i.e., the
limb motion reconstruction using brain signal [7].

2. TENSOR GP REGRESSION

In a standard tensor-variate regression task, we are given a
training setD = {(Xn, yn)}Nn=1 where the scalar output yn ∈
R is generated by a nonlinear function f(Xn) of the D-order
tensor inputXn ∈ RI1×···×ID with an additive Gaussian noise
εn ∼ N (0, σ2)

yn = f(Xn) + εn. (1)

For simplicity, we concatenate all the tensor inputs into a
(D + 1)-order tensor X ∈ RN×I1×···×ID and put all the out-
puts into a vector y = [y1, ..., yN]T .

The tensor GP approach [3] is based on the idea that the
latent function in (1) can be modeled by a GP, i.e.,

f(X) ∼ GP(m(X), k(X ,X ′)|θ), (2)

where m(X) is the mean function, k(X ,X ′) is the covari-
ance function and θ is the associated hyperparameter vector.
In this paper, we follow a standard GP setting in [3, 8] where
m(X) = 0. For k(X ,X ′), we follow [3] and adopt the fol-
lowing product probabilistic kernel:

k(X ,X ′) = α2
D∏

d=1

exp

(
KL(p(x|ΩXd) ‖ q(x′|ΩX ′

d))

−2β2
d

)
,

(3)
where α is the the magnitude hyperparameter, and βd denotes
the d-mode length-scales hyperparameter. The distributions
p and q in the Kullback-Leibler (KL) divergence are charac-
terized by the hyperparameter Ωd (for multivariate Gaussian
Ωd = {µd,Σd}) which can be estimated from the d-mode
unfolding matrix Xd of tensor X by treating each Xd as a

5490978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015

generative model with Id number of variables and I1 × · · · ×
Id−1 × Id+1 × · · · × ID number of observations.

The goal of a tensor GP regression aims to infer the pre-
dictive distribution of the latent function value f(X∗) = f∗
at a new test point X∗ given the training data D. According
to the definition of GP, we can obtain that any finite number
of latent function values at the tensorial inputs are Gaussian
distributed [8]. Consequentially, the joint distribution

p(f∗, y|X∗,X , θ, σ2) (4)

is Gaussian. Moreover, based on the conditional property of
Gaussian distribution, the predictive distribution

p(f∗|X∗,X , y, θ, σ2) = N (m∗, σ
2
∗) (5)

is also Gaussian with

m∗ = kT
X (K + σ2I)−1y (6)

σ2
∗ = k∗ − kT

X (K + σ2I)−1kX , (7)

where k∗ = k(X∗,X∗) and kX = k(X∗,X). However, as
we mentioned, the computational complexity of GP, O(N3),
often makes tensor GP computationally expensive because N
is usually required to be quite large to achieve a reliable result
for a tensor-variate regression task [6].

In the following section, we propose a computationally
efficient tensor GP framework where a fast data processing
mechanism, which is inspired by online local Gaussian pro-
cess (OLGP) in [9, 10], is designed for tensor-variate regres-
sion (tensor OLGP).

3. TENSOR OLGP REGRESSION

In order to deal with large-scale tensor regression tasks,
we take advantage of online local GP (OLGP) to present a
computationally-efficient tensor OLGP regression approach
that consists of the following two stages:

• Stage 1 (GP Experts Construction): Using the covari-
ance function of GP (3) as a similarity measurement
to sequentially partition the training data points into a
number of small-sized experts.

• Stage 2 (Local Prediction): Finding a fixed-number
of local GP experts to make predictions (for given test
tensorial inputs) with a Gaussian mixture.

3.1. GP Experts Construction

To achieve the computation efficiency, we propose to use the
covariance function of GP (as a similarity measurement) to
sequentially allocate the tensorial data into a collection of lo-
cal experts. The whole mechanism to construct GP experts
is shown in Algorithm 1. Specifically, when a new training

Algorithm 1 GP Experts Construction

1: Input: new tensor data pair {Xnew, ynew}
2: for k = 1 to number of local experts R do
3: Compute the similarity to the kth expert using proba-

bilistic tensor kernel function (3):
wk = k(Xnew, Ck)

4: end for
5: Choose the nearest local expert t: simt = max(wk)
6: if simt > wgen then
7: Insert {Xnew, ynew} to the nearest local expert t:
8: X t = [X t,Xnew], yt = [yt, ynew]
9: if maximum number of data points is reached then

10: delete another point by permutation
11: end if
12: Update the corresponding kernel matrix Kt by com-

puting the kernel vector kt(Xnew,X t) for Xnew

13: else
14: Create a new expert:
15: CR+1

.
= Xnew, XR+1 = [Xnew], yR+1 = [ynew]

16: Initialize the new kernel matrix KR+1

17: end if

data pair {Xnew, ynew} arrives, we first calculate the simi-
larity between Xnew and the center of each local expert Ck
using the probabilistic tensor kernel (Line 3). Subsequently,
we choose the closest expert t whose center has the highest
similarity measure simt with Xnew according to (3) (Line 5).
If simt is greater than a predefined threshold wgen, then we
insert this new data pair into that local expert t, and update the
kernel matrix of expert t accordingly (Line 7-12). Otherwise,
we defined Xnew as the center of new expert R + 1 (R is the
total number of local experts), and thus initialize a new kernel
matrix (Line 14-16).

In this stage of GP expert construction, we process the
large data set into a number of small-sized experts in an online
fashion, thus naturally speed up the computation efficiency.

3.2. Local Prediction

After we partition the data sets into a number of small-sized
experts, we propose the following two local search strategies
for prediction of new test point X∗ in order to further take the
tradeoff between accuracy and efficiency into account.

3.2.1. input-based searching strategy

Our first strategy, namely input-based searching strategy,
exploits M nearest local experts to make the prediction.
These M local experts should have the highest similarities
with X∗ among all the local experts according to the ker-
nel function defined in (3). Then the similarity measure
wk = k(X∗, Ck) from the input space between the test point
X∗ and the expert center Ck can be used as the weight of local

5491

expert k. Hence, the resulting prediction ŷ∗ can be formulat-
ed as the weighted combination from each local prediction
ȳk = kk(X∗,X k)T (Kk + σ2I)−1yk as follows

ŷ =

∑M
k=1 wkȳk∑M
k=1 wk

. (8)

3.2.2. input-output-based searching strategy

In the regression task the latent function is a mapping between
input and output, hence we propose to explore the experts
which do not only consider the input space but also the output
space. We design the strategy as follows:

Given a test point X∗, in the first step of our second
strategy we start by finding its nearest local expert Ck

.
=

{XCk , yCk} from the input X -space using tensor kernel func-
tion defined in (3), where the pair {XCk , yCk} is some data
pair coming from local expert k.

With the nearest local expert Ck
.
= {XCk , yCk} in hand,

we aim to find all M candidate experts which are closest to
Ck in output y-space in the second step. More specifically,
we search for M local experts {Cm

.
= {XCm , yCm}}Mm=1 that

are being closest to yCk in y-space among all the local expert
centers. In other words, this step intends to find M small-
est Euclidian distances between yCm and yCk . Then, from
these already found {yCm}Mm=1, we can easily mark their cor-
responding local experts {Cm}Mm=1 as the candidates for pre-
diction. Finally, we use the same weight described in the first
strategy to combine the local predictions.

3.3. Computational Complexity

Table 1 shows the comparisons of overall computational com-
plexity. In both methods, we have to evaluate the tensor kernel
function between any two points to build the kernel matrix.
Such evaluation mainly depends on the estimation of hyper-
parameter Ωd whose cost is dominated by the termO(ID+1),
where I = max{I1, ..., ID}.

For standard tensor GP, the computational complexity of
learning is O(N3), plus the cost of establishing the kernel
matrix O(N2ID+1). The complexity of prediction requires
O(NID+1) to compute the kernel vector kX (X∗,X), where
N is the number of training samples.

In contrast, the cost of tensor OLGP for learning includes
finding the nearest local expert O(NRID+1) and updating
the kernel matrix of that local expert O(NSID+1 + S3),
where R is the number of local experts and S denotes the
maximum number of data points contained in each local ex-
pert. While the computational complexity of prediction arises
from finding M nearest neighbours O(RID+1) and making
M local predictions O(M(SID+1 + S2)). Note that the cost
of our method for learning is only linear in N comparing to
N3 in the case of stand GP.

4. EXPERIMENTAL EVALUATION

In this section, we validate our tensor OLGP on a benchmark
tensor regression application, i.e., the reconstruction of limb
movements from monkey’s brain signals, where each input is
the preprocessed ECoG signal that is a 3rd order tensor (fre-
quency × time × channel), and the output is the movement
distance of the monkey’s limb on different markers (shoulder,
elbow or hand) along each axis (x, y or z) 1.

More specifically, the whole ECoG food tracking task
dataset consists of 15 minutes long experiment with motion
data sampled at 120Hz. To illustrate the effectiveness of our
approach, we first choose a subsegment of the whole dataset
starting from the 2nd minute comprising 10000 data pairs.
We then conduct the experiments by randomly selecting a
training set with size of 5000. The rest 5000 is used as the
test set. As for the input, the wavelet transformed ECoG data
are down-sampled to 5 channels and can thus be written as
X ∈ R5×5×5 for each sample. In our experiment, we choose
the motion data corresponding to the shoulder marker along
the x-axis.

To compare with tensor GP, we perform the evaluation
of our tensor OLGP by showing the learning performance in
terms of accuracy and efficiency. The hyperparameters con-
tained in the probabilistic tensor kernel are set to the same
values empirically for all the methods. We also manually
tune the partitioning threshold parameter wgen whose value
balances the trade-off between accuracy and efficiency of the
final performance. Here, wgen is fixed to 0.5 and the R is
set to 6. We repeat the experiment 10 times. Table 2 shows
the root mean square error (RMSE), negative log likelihood
(NLL) as well as the running time of all the approaches. As
expected, our two tensor OLGP variants (tensor x-OLGP and
tensor xy-OLGP) achieve the best results in terms of running
time. The RMSE of our tensor OLGP is competitive to ten-
sor GP and the NLL of our method outperforms tensor GP.
Although tensor GP is slightly better in RMSE, the nonsta-
tionarity in the signal makes GP with high uncertainty, that
is why tensor OLGP tries to capture the local structure to get
lower uncertainty with a few nearby local experts. In particu-
lar, the training time of tensor OLGP, which is 321.0 seconds,
is about 4 times as fast as that 1279.1 seconds of tensor GP.

We also observe that the tensor xy-OLGP is slightly bet-
ter than tensor x-OLGP in RMSE but somehow worse than
tensor x-OLGP in NLL. In another setting, we increase wgen

to 0.6 and obtain a similar result with an more obvious gap
in RMSE between tensor x-OLGP and tensor xy-OLGP. This
may be because the M most nearby local experts found by
the second strategy tend to make a consistent prediction with
the local expert closest to the test point X∗. We should notice,
however, that the found experts may be faraway from the test
point in the input space, leading to an uncertain prediction.
This somehow explains why the input-based strategy is better

1The data set is available at http://neurotycho.org/food-tracking-task.

5492

Partation + Training Prediction
tensor GP O(N2ID+1 +N3) O(NID+1 +N2)
tensor OLGP O(NRID+1 +NSID+1 + S3) O(RID+1 +M(SID+1 + S2))

Table 1: Computational complexity of tensor GP and tensor OLGP using product probabilistic tensor kernel.

Method RMSE NLL Running Time (s)
Training Testing

data size=10000, wgen = 0.5
tensor GP 3.05± 0.16 7.26± 0.57 1279.1± 9.2 2480.6± 16.7

tensor x-OLGP 4.71± 0.15 2.86± 0.10 321.0± 3.9 503.5± 4.7
tensor xy-OLGP 4.39± 0.18 4.53± 0.43 321.0± 3.9 492.4± 8.3

data size=10000, wgen = 0.6
tensor x-OLGP 4.56± 0.14 2.66± 0.07 511.1± 3.2 829.9± 6.4

tensor xy-OLGP 3.82± 0.15 4.03± 0.41 511.1± 3.2 822.0± 6.8

data size=36000, wgen = 0.4
tensor GP 3.40± 0.19 10.15± 0.81 19141.9± 163.5 39152.4± 230.9

tensor x-OLGP 5.77± 0.19 3.18± 0.12 2819.9± 37.3 5135.2± 66.3
tensor xy-OLGP 5.62± 0.24 4.67± 0.48 2819.9± 37.3 4503.0± 48.1

Table 2: Performance comparison for the prediction of movement on shoulder marker along x-axis.

in NLL.

1000 2000 3000 4000 5000
2.5

3

3.5

4

4.5

5

5.5

6

Number of Training Samples

R
M

S
E

tensor GP
tensor x−OLGP
tensor xy−OLGP

1000 2000 3000 4000 5000
2

4

6

8

10

12

14

16

Number of Training Samples

N
L

L

tensor GP
tensor x−OLGP
tensor xy−OLGP

1000 2000 3000 4000 5000
0

200

400

600

800

1000

1200

1400

Number of Training Samples

L
e
a
rn

in
g

 T
im

e
 (

s
)

tensor GP

tensor OLGP

Fig. 1: Performance comparison vs. number of training sam-
ples, wgen = 0.5, R = 6.

2 3 4 5 6 7 8 9 10 11 12
5

6

7

8

9

Number of Local Experts

R
M

S
E

tensor x−OLGP
tensor xy−OLGP

2 3 4 5 6 7 8 9 10 11 12
2

4

6

8

10

Number of Local Experts

N
L

L

tensor x−OLGP
tensor xy−OLGP

Fig. 2: Performance comparison vs. number of local experts.

From the Fig.1, it is straightforward to see that both
RMSE and NLL of the test set decrease gradually when the
proportion of data used in training increases from 1000 to
5000, implying the stability of the proposed methods. Com-
paring to the polynomial growth in O(N3) of tensor GP, the
learning time of tensor OLGP only grows linearly in O(N).

We are also interested in the situation that how the perfor-
mance can be affected by distinct number of local experts R.
In this context, wgen is set to 0.3, andR is listed from 2 to 12.
These results are demonstrated in the Fig.2. Observe that both
RMSE and NLL reduce significantly before reaching their op-
timal values when R goes up. The result reflects that fact that
a certain number of the most nearby local experts are required
to guarantee a more accurate and reliable prediction. The fur-
ther increase of the R brings no improvement in performance
when the number of local experts becomes saturated.

Finally, we show the performance of scalability to a very
large dataset when comparing all the methods. Here, we use
the first 5 minutes of ECoG data with total number of 36000
data points, and randomly select 18000 points as training set
and use the rest as the testing set. As is shown in Table 2, the
results confirm the great superiority of our method to tensor
GP in terms of scalability. Note that we selectwgen as 0.4 and
R as 20, the which makes our method relatively much faster
than the case of 10000 at only a small cost of accuracy loss.

5. CONCLUSION

In this paper, we have introduced a new tensor-variate local
GP regression framework which successfully adapts the lo-
cal GP modeling to the tensor input space. By doing so, our
method is able to handle the applications of tensor steams in
an online fashion. Furthermore, we have explored two dif-
ferent searching strategies to find the nearest neighbouring
local experts for a reliable prediction. The experimental re-
sults have demonstrated the effectiveness and scalability of
our method with very large-scaled data.

5493

6. REFERENCES

[1] Q. Zhao, C.F. Caiafa, D.P. Mandic, Z.C. Nagasaka,
Y. Fujii, and A. Cichocki, “Higher order partial least
squares (hopls): A generalized multilinear regression
method,” Pattern Analysis and Machine Intelligence,
IEEE Transactions, vol. 35(7), pp. 1660–1673, 2013.

[2] Q. Zhao, G. Adali, T. Zhang, and A. Cichocki, “K-
ernelization of tensor-based models for multiway data
analysis: Processing of multidimensional structured da-
ta,” Signal Processing Magazine, IEEE Transactions,
vol. 30(4), pp. 137–148, 2013.

[3] Q. Zhao, G. Zhang, and A. Cichocki, “Tensor-variate
gaussian processes regression and its application to
video surveillance.,” In Acoustics, Speech and Signal
Processing (ICASSP), 2014 IEEE International Confer-
ence, pp. 1265–1269, 2014.

[4] H. Zhou, L. Li, and H. Zhu, “Tensor regression with
applications in neuroimaging data analysis,” Journal of
the American Statistical Association, vol. 108(502), pp.
540–552, 2013.

[5] A. Eliseyev and T. Aksenova, “Recursive n-way partial
least squares for brain-computer interface,” PloS one
8(7), 2013.

[6] T. Oommen, D. Misra, N.K.C. Twarakavi, A. Prakash,
B. Sahoo, and S. Bandopadhyay, “An objective anal-
ysis of support vector machine based classification for
remote sensing,” Mathematical Geosciences, 2008.

[7] Z.C. Chao, Y. Nagasaka, and N. Fujii, “Long-term asyn-
chronous decoding of arm motion using electrocortico-
graphic signals in monkeys,” Frontiers in Neuroengi-
neering 3, 2010.

[8] C. E. Rasmussen and C. K. I. Williams, Gaussian Pro-
cess for Machine learning, MIT Press, 2006.

[9] D. Nguyen-Tuong, J. Peters, and M. Seeger, “Local
gaussian process regression for real time online model
learning,” In Advances in Neural Information Process-
ing Systems, pp. 1193–1200, 2009.

[10] R. Urtasun and T. Darrell, “Sparse probabilistic regres-
sion for activity-independent human pose inference,” In
Computer Vision and Pattern Recognition, CVPR, 2008.

5494

