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ABSTRACT

Sparse signal recovery in the static case has been well studied under
the framework of Compressive Sensing (CS), while in recent years
more attention has also been paid to the dynamic case. In this pa-
per, enlightened by the idea of modified-CS with partially known
support, and based on a non-convex optimization approach, we pro-
pose the dynamic zero-point attracting projection (DZAP) algorithm
to efficiently recover the slowly time-varying sparse signals. Bene-
fiting from the temporal correlation within signal structures, plus an
effective prediction method of the future signal based on previous re-
coveries incorporated, DZAP achieves high-precision recovery with
less measurements or larger sparsity level, which is demonstrated
by simulations on both synthetic and real data, accompanied by the
comparison with other state-of-the-art reference algorithms.

Index Terms— Time-varying, sparse signal recovery, non-
convex approach, exponential smoothing, dynamic zero-point at-
tracting projection (DZAP).

1. INTRODUCTION

Compressive Sensing (CS) [1–3] utilizes the inherent sparsity fea-
ture of real-world signals and observes them with only a few random
projections, making it possible to acquire signals below Nyquist rate
while putting more efforts to the signal processing end. Previous
works mainly focus on sparse signal recovery in the static setting,
while in some applications time-dependent signals are more natu-
ral to be modeled as slowly time-varying sparse ones, e.g. real-time
magnetic resonance imaging [4,5] and channel equalization in com-
munications [6].

In this paper, we study the problem of recovering a slowly time-
varying sparse signal {st ∈ RN , t = 1, 2, . . . }, with at most K
(K � N) nonzero entries at each time instance t, from the linear
measuring process

yt = Atst + vt (1)

where {yt ∈ RMt , t = 1, 2, . . . } is the measurement series, At ∈
RMt×N is the sensing matrix, and vt is the additive noise. Usual-
ly Mt � N , leading to an under-determined system of equations.
we are interested in designing an efficient algorithm to recover the
sparse signal series {st} from the measurement series {yt}. Here
by saying “slowly time-varying”, we mean that the amplitudes of
nonzero entries do not change abruptly with time, and their loca-
tions may only change slightly at adjacent time instances. In one
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case, [7] shows that for a typical sequence of real-world MRI im-
ages in wavelet domain, the maximum support changes are less than
2% of the support size, and almost all signal value changes are less
than 4% of the signal energy. Therefore, strong temporal correla-
tions are inherent in the signal structure which could be potentially
helpful in designing efficient processing schemes.

Much progress has already been made. To name a few, L1 Ho-
motopy Dynamic Updating [8] moves the solution along the piece-
wise continuous homotopy path, using previous signal estimate as a
starting point. DCS-AMP [9] is a representative of complex proba-
bilistic modeling. Other MMV algorithms, such as Group Lasso and
Fused Lasso [10], are also raised for the almost invariant support
case. And in [11], the dynamic CS problems are instead tackled by
reconstructing the difference signals. Namrata Vaswani et al. have
shown that sparse recovery with partially known support yields bet-
ter performance than traditional CS [12, 13], resulting in modified-
CS, which could be easily fitting into the dynamic setting. This idea
is also extended to modify some other algorithms in [14], but not
specially aiming at slowly time-varying signals.

In this paper, we present a framework of dynamic sparse signal
recovery using a non-convex optimization approach under the as-
sumption of the very slowly changing pattern. More specifically, we
extend one of this approach, called zero-point attracting projection
(ZAP) [15], which is later generalized to the approximate projected
generalized gradient (APGG) method [16], to the dynamic setting.
Since ZAP adopts non-convex non-smooth function as the penalty,
it uses the generalized gradient of the penalty function in the up-
date procedure. When the penalty is convex, generalized gradient is
commonly known as subgradient. By updating the sparsity penalty
based on support approximation and incorporating signal prediction
techniques combined with the algorithm setting, the dynamic ZAP
(DZAP) can greatly lower the requirements for sampling rate and
sparsity level for high recovery accuracy, meanwhile costing much
less running time. In the following sections of this paper, we de-
scribe the DZAP algorithm for time-varying sparse signal recovery
in detail, and use experimental results to demonstrate its validity
and good performance in comparison with other state-of-the-art al-
gorithms.

2. TIME-VARYING SIGNAL RECOVERY: DYNAMIC ZAP

2.1. Notation

Throughout this paper, we use boldface lowercase letters to denote
vectors, and boldface uppercase letters to denote matrices. The sub-
script t is strictly used to indicate time instances in time-dependent
quantities, whereas the superscript with parentheses, such as (n), is
the signal element index, and the letter p indexes an iteration. There
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are mainly three different notations of a signal: st denotes the true
signal at time t, ŝt denotes the recovered signal, and s∗t denotes pre-
dicted signal for time t based on previous recoveries. Finally, we use
supp(·) to represent the support of a sparse signal, and for a signal
that is not strictly sparse, we use suppβ%(·) to denote the smallest set
containing β% energy of the signal, called the “shrinkage support”.

2.2. Basic Approach

Essentially different from the popular l1 relaxation and greedy pur-
suits, our proposed method is based on a non-convex approach. For a
time-varying signal, at time instance t, we aim to solve the following
optimization problem:

min Jt(s), s.t. yt = Ats (2)

where Jt(·) is a non-convex penalty function serving as an approxi-
mation to the l0-norm, and it is separable down to the sum of some
sort of sparsity-inducing penalties on each signal element

Jt(s) =
N∑
n=1

F
α
(n)
t

(s(n)). (3)

There are many choices for the parameter controlled sparsity-
inducing function Fα(·) (see more details in [16]), and here we
choose it as

Fα(x) =

 2α|x| − α2x2 |x| ≤ 1

α
;

1 elsewhere.
(4)

To find the optimal solution to problem (2), ZAP does the following
two steps in each iteration. First, the solution is updated along the
negative gradient direction of the sparsity penalty

s̃t(p+ 1) = ŝt(p)− κp · ∇Jt(ŝt(p)) (5)

where κp > 0 is the variant step size (decreasing at convergence)
and∇Jt(·) is the generalized gradient of the penalty Jt(·). Then the
update is projected back to the solution space of yt = Ats

ŝt(p+ 1) = s̃t(p+ 1) +A†t (yt −Ats̃t(p+ 1)) (6)

where A†t = AT
t (AtA

T
t )
−1 is the pseudo inverse matrix of At.

The static algorithm usually starts from the initialization position
ŝt(0) = A†tyt. For large scale problems where the accurate pseu-
do inverse matrix is difficult to derive, [16] shows that approximate
calculation of it would also lead to favorable recovery performance
with reduced computational complexity.

2.3. J-function update based on support approximation

The optimality of the solution to the problem (2) is heavily depen-
dent on the non-convexity of the J-function, which can be purely
measured by the parameter α. The larger α is, the closer the elemen-
tal sparsity-inducing penalty Fα(·) is to the l0 norm, thus attracting
the corresponding signal element to zero-point more strongly in ev-
ery iteration. However, not all the elements are those we want to
reduce to zero, especially those inside the signal support.

In the slowly time-varying signal model, we suppose that there
is, if existing, only a very small portion of support that changes every
time, thus the following approximation has very high probability of
success (given a recovery with high accuracy at time t− 1):

supp(st) u supp(st−1) u suppβ%(ŝt−1) (7)

Table 1. Outline of the DZAP Algorithm
Set parameters: αin, αout, κ0, β, stopping criterion;
Input: {yt}, {At}, t = 1, 2, 3, . . . ;
Output: {ŝt}.
Initialization: ŝt(0) = A†tyt and Jt(·) for t = 1.
Repeat: (at time instance t; starting from t = 1)

Recover: Solve the problem (2):
Repeat: (at pth iteration; initialize p = 0)

Zero-point attracting by (5);
Solution space projection by (6);
p→ p+ 1;

Until: stopping criterion for iteration satisfied;
Output: recovered signal ŝt;

Sparsity penalty function update: Adjust Jt(·) by (8);
Signal prediction: Compute s∗t by (9), set ŝt+1(0) = s∗t ;
Move forward: t→ t+ 1;

Until: t is the last time instance.

where suppβ%(·) is adopted since ŝt−1 may not be strictly sparse.
According to the support approximation, we update the J-function
at every time instance by setting different values for α(n)

t for signal
elements depending on where they locate

α
(n)
t =

{
αin n ⊆ suppβ%(ŝt−1)

αout n 6⊆ suppβ%(ŝt−1)
(8)

where αin and αout are constants satisfying 0 ≤ αin < αout, which
means more emphasis on the pursuit of sparsity outside of support.
The algorithm can tolerate small errors in support approximation be-
cause of the projection procedure, and the parameters αin, αout, and
β are chosen empirically by considering the approximation quality,
iterative initialization, and signal energy comprehensively.

2.4. Signal Prediction for Initialization Setting

The initialization setting ŝt(0) for the ZAP iteration is very impor-
tant in avoiding a local minima and guaranteeing the algorithm con-
vergence for sparsity penalties with different non-convexities [16],
especially when with not adequate measurements. For every recov-
ery, a closer initialization position to the true signal than A†tyt is
desirable for better performance, and that’s where we incorporate
the signal prediction strategy in the dynamic case.

To begin with, we assume that the signal energy stays stable, and
the degree of “closeness” (measured in correlation) to the signal st is
decreasing in the order of st−1, st−2, . . . , s1, meaning that the more
recent a past signal is in time, the more it can tell about the current
signal, which is also justified in our slowly time-varying signal mod-
el. Therefore, we use the exponential smoothing method to make a
prediction of the current signal from previous recoveries:

s∗t =

{
0 for t = 1

γ ŝt−1 + (1− γ) s∗t−1 for t ≥ 2
(0 < γ ≤ 1) (9)

More clearly, if we expand the recursion and rewrite (9) as

s∗t =γ ŝt−1 + (1− γ) s∗t−1

=γ ŝt−1 + (1− γ)[γ ŝt−2 + (1− γ) s∗t−2] = · · ·
=γ ŝt−1 + γ(1− γ) ŝt−2 + · · ·+ γ(1− γ)t−2 ŝ1

(10)
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Fig. 1. Results for the simulations on synthetic data. (a) Average rates of successful recovery over 50 time instances vs. the number of
measurements. (b) Average rates of successful recovery over 50 time instances vs. signal sparsity. (c) Average running time for recovering a
50 time instance signal vs. signal sparsity.

we can see the prediction equation is actually a weighted average,
with the weights for older recoveries decrease at an exponential rate,
which fits our signal closeness assumption. Note that by predicting
in this way, we do not suppose any trend or properties such as peri-
odicity of the signal are known in advance. The recursion (9) merely
makes the computation efficient.

The parameter γ is very crucial since it controls the weights dis-
tribution: a larger γ places more emphasis on latest recovery, thus
can adjust the prediction to signal changes more quickly, and a s-
maller γ cares more about the whole period, thus can better dampen
out prediction fluctuations introduced by recovery noises. For the
case where the signal follows a time-invariant changing pattern, we
take a further step to propose an adaptively γ tuning method, based
on the prediction error PEt =

‖s∗t−ŝt‖2
‖ŝt‖2

, adjusting γ by

γ = γt =


1 if PEt−1 > 1

PEt−1 if PEt−1 ∈ (0, 1]

0.0001 if PEt−1 = 0

(11)

and the initialization is γ2 = 1. In other words, we rely on the
previous prediction quality to guide on our decision for the next time.

After getting the signal prediction, we initialize the recovery
procedure with ŝt(0) = s∗t . Combined with the J-function updating
scheme based on support approximation, we develop the dynamic
ZAP (DZAP) algorithm, which is summarized in TABLE 1.

3. SIMULATION RESULTS

3.1. Synthetic Data

We start by testing our approach on synthetic data. The synthet-
ic time-varying signal has 50 time instances, following the slowly
changing pattern: a random number of non-zeros change with time
in low-frequency sinusoidal curves (others stay unchanged), and the
support changes (only happen when an entry approaches to zero)
are limited less than 10% of the support size. The signal length is
fixed at N = 1000, and the sparsity is kept as K = 30. The sens-
ing matrix At has entries following i.i.d. N (0, 1/Mt) distribution,
and the white noise vt is also Gaussian, fixing MSNR (defined as
10 lg( ‖Atst‖2

‖vt‖2
)) at 30dB. Because of no prior information for the

first time instance, we set A1 taller and A2 stays the same for the
following time instances.

2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Frame number

R
el

at
iv

e 
er

ro
r

 

 

Average PE with fixed γ=1
Average PE with adaptive γ 
Signal change

Fig. 2. Average prediction error PEt = ‖s∗t −st‖2/‖st‖2 of DZAP
in recovering a cardiac image sequence, and the changing error of
the true signal, computed by ‖st − st−1‖2/‖st‖2. Note that the red
line also illustrates the average time-varying γ in adaptive prediction
method, whose value is affected by the signal changing pattern.

Two numerical simulations with the above signal model are im-
plemented. The algorithms used for comparison include static ZAP
[15], static BPDN [17,18], static GPSR BB [19], L1 Homotopy Dy-
namic Update [8], EM-DCS-AMP [9], ModCs [12], and a modified
version (with the idea of modified-CS) of GPSR BB (coined MoGP-
SR BB). The parameter settings of DZAP are: αin = 0, αout = 10,
initialized step size κ0 = 5× 10−4, and β = 99.9. In both simula-
tions, we do not apply adaptive γ in the prediction step, instead, we
simply set γ = 1 (s∗t = ŝt−1). We evaluate the reconstruction error
by mean square deviation defined as MSD = E‖ŝt−st‖2

E‖st‖2
.

In the first experiment, we test the algorithm performance versus
the number of measurements. We setM1 = 200,M2 ranging from 1
to 160 to run the recovery algorithms, and for eachM2 we repeat 200
times. Fig. 1(a) shows the average successful recovery rate within 50
time instances (we claim a “successful recovery” at time t if its MSD
is below 0.01), from which we can see ModCs, MoGPSR BB, and
DZAP perform the best and are comparable to each other.

In the second experiment, we test the algorithm performance
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Fig. 3. Average MSD of recovering a 20-frame cardiac image
sequence. DZAP with adaptive exponential smoothing prediction
works the best.

versus the signal sparsity. We fix M1 = 400 (to avoid the perfor-
mance downgrades produced by unfit initialization at first time in-
stance), M2 = 100, and change the sparsity level K from 5 to 120,
again running 200 times for each K. The recovery rates for differ-
ent algorithms are shown in Fig. 1(b), in which the proposed DZAP
algorithm outperforms all the others.

Fig. 1(c) shows the average running time in the second experi-
ment. Here we should note that although the approximate calcula-
tion of the pseudo inverse of sensing matrix At in DZAP algorithm
can reduce computational complexity [16], we do not apply it in this
simulation to make the speed comparison clear. As can be seen,
both EM-DCS-AMP and L1 Homotopy run very fast but are not tol-
erating more sparsity, and among the three algorithms allowing the
largest sparsity levels, ModCs is too slow to implement in practice;
DZAP consumes a moderate amount of time that is not affected by
sparsity, while the time needed by MoGPSR BB is exponentially in-
creasing with the scale of problem. Thus, DZAP can be seen as a
great balance between performance and complexity.

3.2. Real Data

Finally, we test the proposed algorithm on a dynamic MRI image
sequence, as well as validating the effectiveness of the adoption of
adaptive exponential smoothing for signal prediction. The 20-frame
cardiac images are firstly obtained from Namrata Vaswani’s web-
site (http://www.ece.iastate.edu/ namrata/) and then down sampled
to the size of 64 × 64, and they are compressible in the two-level
Daubechies-4 2D discrete wavelet transform (DWT) domain. The
corresponding 1D signal has length N = 4096, and we take Gaus-
sian random measurements of the DWT coefficients with down sam-
pling rate 0.5 at the first frame and 0.2 for the following frames. We
run DZAP with γ = 1 in the prediction step, DZAP with adaptive
γ, and modified-CS as a benchmark to recover the signals, each for
10 times with different sensing matrices. Here we set αin = 0,
αout = 1, κ0 = 5× 10−4, and β = 99.9.

To demonstrate the performance of our adaptive γ tuning
method incorporated in the signal prediction procedure, we plot
the average prediction error for adaptive γ (note that this is also the
time-varying curve of γ according to (11)) and for γ = 1 as a com-
parison in Fig. 2. We also illustrate the signal changes there. It is

Fig. 4. Frames 1, 4, 10, 20 of the dynamic 64 × 64 MRI cardiac
image sequence. From top to bottom: original image, recovered
image by modified-CS, recovered image by DZAP with γ = 1, and
recovered image by DZAP with adaptive γ.

seen that the signal has quite abrupt changes at frames 2, 9, and 17,
where the adaptive γ adjust itself to a higher level to better follow
the signal, and at other frames it smoothly lower the prediction error.
In contrast, the prediction is becoming worse with frame number
increasing for the setting of fixed γ = 1, which is not so much of a
prediction since actually s∗t = ŝt−1.

As for the recovery performances, we plot the average MSD for
the testing algorithms in Fig. 3. With the close initialization posi-
tions provided by prediction, clearly DZAP with adaptive γ tuning
method works the best in terms of recovery accuracy. Fig. 4 shows
the four frames of the original cardiac images and the recovered
ones, from which we can see that the images recovered by modified-
CS are contaminated with relatively higher noises at later frames (the
second line), while DZAP with adaptive γ performances better in vi-
sual quality (the bottom line). In addition, the average running time
it takes for DZAP for one sequence recovery is around 3 minutes,
whereas modified-CS takes about 2 hours.

4. CONCLUSION

In this paper, we propose an efficient online algorithm DZAP for
recovering slowly time-varying sparse signals, which is an exten-
sion of the recently proposed non-convex approach from static to
dynamic scenarios. As the sparse pattern changes very slowly with
time, DZAP utilizes the additional information provided by the pre-
viously recovered signals, with the mechanisms of sparsity penalty
update based on support approximation, and incorporated with sig-
nal prediction techniques to aid the algorithm. In comparison with
previously proposed dynamic CS algorithms, experiments on both
synthetic and real data attest to the effectiveness of the adaptive pre-
diction method, as well as showing that DZAP needs fewer measure-
ments, allows larger sparsity level, and runs at a moderate speed.
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