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ABSTRACT

Albeit being in the big data era, a significant percentage of
data accrued can be overlooked while maintaining reason-
able quality of statistical inference at affordable complexity.
By capitalizing on data redundancy, interval censoring is
leveraged here to cope with the scarcity of resources needed
for data exchanging, storing, and processing. By appropri-
ately modifying least-squares regression, first- and second-
order algorithms with complementary strengths that operate
on censored data are developed for large-scale regressions.
Theoretical analysis and simulated tests corroborate their
efficacy relative to contemporary competing alternatives.

1. INTRODUCTION

Nowadays ubiquitous monitoring sensors, e-commerce sites,
and Internet-friendly portable devices generate massive vol-
umes of dynamic data. The task of extracting the most infor-
mative, yet low-dimensional structure from large datasets is
thus of paramount importance. Redundancy is an attribute
of massive datasets encountered in various application do-
mains [3]. Judiciously exploiting this redundancy offers an
effective means of reducing data processing costs. In this
context, the fresh idea here is relying on data censoring
to quantify how informative each datum is. Censoring ap-
pears naturally in several areas in econometrics, biometrics,
sociometrics and engineering [1], including survival analy-
sis [5], saturated metering [11], and collaborative spectrum
sensing [6]. It has recently been employed to select sensors
for distributed estimation of parameters and dynamical pro-
cesses using resource-constrained wireless sensor networks,
thus trading off performance for tractability [9, 13]. Itera-
tive censoring combined with maximum likelihood estima-
tion was introduced in [15]. These works corroborate that
estimation accuracy attainable with censored measurements
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can be comparable to that of estimators based on uncen-
sored data. Therefore, censoring has great potential to lower
data processing costs, which is certainly beneficial in big
data applications.

To this end, the present work employs adaptive censor-
ing for large-scale regressions. The key innovative idea is to
sequentially test and update least mean-square (LMS) or re-
cursive least-squares (RLS) estimates only for informative
data. Specifically, future target variables are predicted us-
ing the current estimate of the regression coefficient vector.
Predictions are then used to form the innovations, based on
which the importance of future data is assessed, and a deci-
sion is made whether to update or not the coefficient vector
using first- or second-order iterations. Analysis and simu-
lated tests corroborate that the proposed schemes maintain
high estimation accuracy while reducing data costs, and out-
perform alternatives based on random projections [7], and
the randomized Kaczmarz’s algorithm [16].

Notation. Lower- (upper-) case boldface letters denote
column vectors (matrices); calligraphic letters stand for sets.
Symbols aT and ‖a‖2 denote transposition and the `2-norm.
The symbols λmin, λmax, and trace denote the minimum,
the maximum, and the sum of the eigenvalues of a matrix,
while Q(x) :=

∫∞
x

exp−x2/2√
2π

∂x.

2. PROBLEM FORMULATION

Suppose an unknown vector θ0 ∈ Rp is to be estimated
from streaming data. In a simplifying yet sufficiently repre-
sentative setup, consider the linear model yn = xTnθ0 + vn,
where {yn,xn}Nn=1 are given pairs of scalar target variables
and feature vectors, while {vn}Nn=1 capture noise. Collect-
ing data and noise into y,v ∈ RN , and X ∈ RN×p, the
following matrix-vector model is obtained

y = Xθ0 + v. (1)

The dataset (y,X) can be prohibitively large (N � p) for
the available computing platform to estimate the wanted θ0
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via ordinary least-squares (LS). How big is N can be rel-
ative: For a mainframe, N can be in the order of billions,
but for a sensor under stringent power resources N can be
deemed big if in the order of thousands.

Aiming at dimensionality reduction, censoring will be
advocated as a means of discarding data. A general censor-
ing rule takes the form

zn :=

{
∗ , yn ∈ Cn
yn , otherwise (2)

where Cn denotes the censoring interval or set. When datum
yn is censored, the estimator simply knows that yn ∈ Cn;
otherwise, the actual yn is observed. Let cn denote a binary-
valued censoring variable that equals 1 when the n-th datum
is censored; and 0, otherwise. We wish to design Cn and de-
cide the value of cn based on the innovation |yn−ŷn|, where
ŷn is obtained in two possible formats, as detailed next. The
first uses a non-adaptive censoring (NAC) rule that relies on
a preliminary estimate of θ0; e.g., the LS estimate θ̂K ob-
tained from a minimal number of K data (p ≤ K � N).
With ŷn = xTn θ̂K , the FC rule is given by

(zn, cn) :=

{
(yn, 0) ,

∣∣∣yn − xTn θ̂K

∣∣∣ ≥ β
(∗, 1) , otherwise

(3)

where ∗ signifies that the exact value of yn is unavailable,
and the threshold β controls the percentage of censored data.
We used the FC rule to censor data with innovations smaller
than β, and obtained a censored LS estimator even when the
wanted coefficient vector is sparse [14].

Rather than using a fixed estimate to acquire target pre-
dictions, we adopt here the adaptive censoring (AC) rule

(zn, cn) :=

{
(yn, 0) ,

∣∣yn − xTnθn−1
∣∣ ≥ β

(∗, 1) , otherwise
(4)

where ŷn relies on the most recent estimate θn−1. The AC
rule of (4) is combined next with stochastic approximation
algorithms to jointly effect online estimation and censoring.

3. ADAPTIVELY CENSORED LEAST-SQUARES

To appropriately exploit the censored data in (4), let us con-
sider finding the unknown θ0 as the minimizer of

min
θ

N∑
n=1

fβ(yn − xTnθ) (5)

where fβ(e) is defined for some β ≥ 0 as

fβ(e) :=

{
1
2 (e2 − β2) , |e| > β
0 , |e| ≤ β . (6)

The optimization problem in (5) couples estimation and data
reduction. At the optimum, the data points achieving an ab-
solute residual |yn − xTnθ| smaller than the threshold β do
not contribute to the optimal cost. On the contrary, relatively
large residuals are summed up in the optimal cost. Yet find-
ing which data pairs (yn,xn) are informative in the sense
of providing large residuals requires considering the entire
dataset and tackling (5) in a batch manner.

First-order stochastic algorithm. Since solving (5) be-
comes challenging for large N , a practical solution is re-
sorting to stochastic approximation and handling a single
summand fβ(yn − xTnθ) at a time. For a step size µn, the
stochastic subgradient descent iterations for (5) can be eas-
ily shown to be

θn = θn−1 + µn(1− cn)xn(yn − xTnθn−1) (7)

where cn is defined as in (4) for τ = β. Note that for β = 0,
problem (5) constitutes the LS estimator of θ. In that case,
all censoring variables are set to cn = 0, and the iterations
in (7) simplify to the ordinary Least Mean Square (LMS)
algorithm [10]. The convergence of the iterations in (7),
henceforth referred to as the adaptively-censored LMS (AC-
LMS) algorithm, is characterized in the following proposi-
tion whose proof is avoided due to space limitations.

Proposition 1. Assume regressors xn are generated i.i.d.
with E [xn] = 0, E

[
xnxTn

]
= Rx, E

[
xTnxnxn

]
= 0, and

E
[(

xnxTn
)2]

= R2
x, while observations yn are obtained

according to (1) for v ∼ N (0, σ2IN ). For µn = µ/(αn),
an initial estimate θ1, and β = τσ, the mean square error
(MSE) of the AC-LMS iterates is bounded as

E
[
‖θn − θ0‖22

]
≤ e4L

2/α2

n2

(
‖θ1 − θ0‖22 +

∆

L2

)
+ 8

∆

α2

log n

n

where α = 2Q(τ)λmin(Rx), L2 = λmax

(
R2
x

)
, and ∆ =

2tr(Rx)σ2 (1−Q(τ) + τp(τ)). Furthermore, for µn =
µ < α/16L2 the AC-LMS enjoys exponential convergence
to a bounded error set

E
[
‖θn − θ0‖22

]
≤ 2 exp

(
−
(αµ

4
− 4L2µ2

)
n− 4L2µ2

)
(
‖θ1 − θ0‖22 +

∆

L2

)
+

4µ∆

α
.

Rule (4) together with Proposition 1 reveal that as θn →
θ0 in the mean-square sense, it holds that yn − xTnθn−1 ≈
vn, and hence, Pr (cn = 0) = 2Q(τ). For large enough
datasets, choosing τ = Q−1

(
d
2N

)
will approximately result

to d out of total N data being used. To further control the
average data rate, generalizations of (7) with time-varying
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threshold β have been developed, but are not presented here
due to space limitations.

Second-order stochastic algorithm. To accelerate the
joint task of sequential estimation and data reduction, a sec-
ond-order sequential algorithm closely resembling recursive
least squares (RLS) is devised next. Conventional RLS can
be viewed as a second-order stochastic gradient descent meth-
od for minimizing

∑N
n=1(yn − xTnθ)2 taking the form

θn = θn−1 −M−1
n ∇fn(θn−1)

with an ideal matrix step-size Mn = E[∇2(yn − xTnθ)2] =
E
[
xnxTn

]
that is practically replaced by its sample average.

Applying a second-order stochastic gradient descent for
the problem in (5) yields the adaptively censored RLS (AC-
RLS) algorithm whose iterations are as follows:

gn =
1− cn

1 + xTnPn−1xn
Pn−1xn (8a)

Pn = Pn−1 − gnxTnPn−1 (8b)

θn = θn−1 + gn(yn − xTnθn−1) (8c)

where the censoring decision cn is decided according to (4).
Observe that once a datum has been censored (cn = 1),
the AC-RLS iterates yield gn = 0, and hence, the matrix
step size Pn, and the estimate θn remain at their previ-
ous values. Skipping (8c) and particularly (8b) provides
a low-complexity algorithm, whose MSE performance re-
mains bounded as shown next.

Proposition 2. Assume regressors xn are generated i.i.d.
with E [xn] = 0 and E

[
xnxTn

]
= Rx, while observations

yn are obtained according to model (1) for v ∼ N (0, σ2IN ).
For an initial estimate θ1 = 0, and β = τσ, there exists a
k > 0 such that for all n ≥ k the iterations in (8) yield
estimates θn with MSE bounded as

1

n
tr
(
R−1x

)
σ2 ≤ E

[
‖θn − θ0‖22

]
≤ 1

n

tr
(
R−1x

)
σ2

2Q(τ)
.

Apart from offering an effective method for handling
streaming data, AC-RLS is capable of reducing the dimen-
sion of large-scale LS problems. In recent works, the prop-
erties of random projections (RP) in relation to leverage
scores have been advocated for reducing the size of large-
scale LS regression problems [7], [8]. To outline RP-based
methods in the present context, recall that given a full-rank
matrix X and target vector y, the LS prediction of target
variables is simply ŷ = Py, where P := X(XTX)−1XT

is the so termed hat matrix. The leverage score per regressor
xn is the n-th diagonal entry of P. If data are drawn from
the model in (1), the prediction error is ŷ − y = (I−P)v.
It follows that var(ŷn) = σ2(1 − Pnn), showing that the
leverage score captures the fitting importance of datum n.
As shown in [8], one way to reduce the dimensionality of

the original LS problem without significantly affecting esti-
mation accuracy, is by finding the LSE for a data subset with
relatively high leverage scores. Unfortunately, computing
the main diagonal of P comes at a high computational cost
O(p2N). In its basic form, the RP-based approach linearly
transforms data (y,X) so that leverage scores come close
to being uniform. This is achieved by premultiplying data
with HD, where H denotes an N × N Hadamard matrix,
and D a diagonal matrix whose diagonal entries take the
values {−1/

√
N,+1/

√
N} equiprobably. Since all trans-

formed data are approximately of “comparable importance,”
it turns out that with complexity o(p2N) one can solve the
reduced-size LS problem [7, 8]

θ̃d := arg min
θ
‖SdHD(y −Xθ)‖22 (9)

where Sd is a d×N matrix representing a uniform random
selection of d < N measurements.

Upon setting τ = Q−1
(
1
2
d
N

)
, AC-RLS attains approx-

imately the same data usage ratio of d/N by scanning the
observations and selecting the most informative ones. As
numerically corroborated in Section 4, AC-RLS achieves
significantly lower estimation error. Intuitively, this can be
attributed to the fact that, unlike RPs that are based only
on X, adaptive censoring extracts the most informative sub-
set of data from (y,X). Regarding robustness, quadratic
error losses are known to be sensitive to outliers, while se-
lecting observations with high instantaneous error further
aggravates the situation. To mitigate this problem, robust
versions of the AC-LMS and AC-RLS have been developed
and will be presented in coming work.

4. NUMERICAL TESTS

Our novel AC-RLS algorithm was tested on synthetic data
as a data-reducing scheme. Its relative LS error (LSE), i.e.,
‖θ0− θ̂n‖2

/
‖θ0‖2, was compared with the Hadamard-pre-

conditioned RP-based LS solver of [8] for different values
of the data reduction ratio (d/N). Apart from these two
methods, the relative LSE obtained by uniformly sampling
d out of N data pairs (yn,xn) was used as a naive bench-
mark. Data were generated according to (1) for p = 300,
N = 10, 000, and v ∼ N (0, 9I).

In the first experiment, regressors {xn}were drawn from
a heavy-tail multivariate Student t-distribution with one de-
gree of freedom and covariance matrix with entries Σi,j =

2 × 0.5|i−j|. Such a distribution yields matrices X with
highly non-uniform leverage scores, and thus, uniform sam-
pling without preconditioning performs poorly. As verified
by Fig. 1, preconditioning considerably improves perfor-
mance by incorporating important data via RPs. Further
improvement is achieved by AC-RLS that adaptively selects
informative data at no extra computational cost.
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Figure 1: Relative LSE versus data reduction ratios using
highly non-uniform leverage scores.
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Figure 2: Relative MSE of AC-RLS and randomized LS al-
gorithms, for different levels of data reduction. Moderately
non-uniform leverage scores

In Fig. 2, the experiment is repeated for xn generated
from a multivariate t−distribution with 3 degree of free-
dom and covariance matrix Σ as before. Leverage scores
for this dataset are moderately non-uniform, thus inducing
more redundancy and resulting in lower performance for all
algorithms, while closing the gap between preconditioned
and non-preconditioned random sampling. Again, AC-RLS
performs significantly better in estimating the unknown pa-
rameters for the entire range of data size reduction.

Figure 3 shows the results obtained from Gaussian data
xn ∼ N (0,Σ), in which case matrix X exhibits almost
uniform leverage scores. As seen in plots, preconditioning
offers no improvement in random sampling for this type of
data, whereas the AC-RLS succeeds in extracting more in-
formation on the unknown θ.

The AC-LMS algorithm was tested on synthetic data as
an alternative to the Randomized Kaczmarz’s algorithm [16].
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Figure 3: Relative MSE of AC-RLS and randomized LS
algorithms, for different levels of data reduction. Uniform
leverage scores
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Figure 4: Relative MSE AC-LMS and Randomized Kacz-
marz’s algorithm.

For this experiment, a total of D = 30, 000 observations yn
were generated according to (1) for v ∼ N (0, 0.25IN ) and
100-dimensional regressors xn ∼ N (0,Σ). For the Ran-
domized Kaczmarz’s algorithm, the probability of selecting
the i−th row is equal to pn = ‖xn‖22/‖X‖2F as proposed in
[16]. Since the complexity of the two methods is roughly
the same, they are compared in terms of their estimation
error. Plotted in Fig. 4, are the Relative MSE (RMSE)
curves of the two algorithms with respect to N averaged
over 50 Monte Carlo runs. While AC-LMS scans the en-
tire dataset updating only informative data, the Randomized
Kaczmarz’s algorithm needs access only to the data used
for its updates. That holds under the assumption that the
data-dependent selection probabilities pn are given a-priori,
which may not always be the case. Regardless, two more
experiments were run, in which the AC-LMS had limited
access to 3000 and 1400 data. Overall, it can be argued that
when the sought reduced dimension is small, the AC-LMS
becomes a simple and reliable alternative to Randomized
Kaczmarz’s algorithm.
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