
COVARIANCE TRACKING FROM SKETCHES OF RAPID DATA STREAMS

Yiran Jiang† and Yuejie Chi†,‡

†Department of Electrical and Computer Engineering, The Ohio State University
‡Department of Biomedical Informatics, The Ohio State University

ABSTRACT

Estimating and tracking the covariance matrix of high-dimensional
data streams with low complexities in acquisition, storage and com-
putation are of great interest in modern data-intensive applications.
This paper develops an online covariance estimation and tracking
algorithm for a recently developed covariance sketching framework
that requires a single sketch per sample [1], by leveraging the low-
rank structure of the covariance matrix. In particular, we devise a
discounting mechanism in the aggregation procedure to enable faster
tracking when the covariance structure changes over time. The per-
formance of the proposed algorithm is validated through numerical
examples.

Index Terms— streaming data, covariance estimation and track-
ing, alternating projection, sketching

1. INTRODUCTION

Modern data-intensive applications have generated an explosive
amount of high-dimensional and high-rate data samples that have
overwhelmed traditional sensor suites to be fully observed and
stored. In many cases, the data has to be processed on-the-fly [2]
to respect time and resource constraints, making it challenging to
extract useful information from the data stream in real time. What
saves the day is that many real-world data streams can be in fact
described by a number of parameters much smaller than the ambi-
ent dimension, such that each data sample lies approximately in a
low-dimensional subspace possibly varying over time. Therefore, it
is of great interest to estimate and track the underlying subspace for
signal processing tasks, such as anomaly detection, target tracking
and video surveillance [3].

Subspace estimation and tracking is a central topic in signal pro-
cessing with many well-known algorithms such as Oja’s rule and its
many variations [4], Yang’s PAST algorithm [5], and etc. However,
they all require fully observed data samples which become ineffec-
tive or break down completely when the data samples are contami-
nated with missing entries. Until recently, efficient online algorithms
have been developed to track partially observed data streams with
low computational costs [6, 7, 8, 9, 10, 11] motivated by the advance
in matrix completion [12]. However, these algorithms are unsatis-
factory because the number of observed entries per sample has to be
at least greater than the subspace rank, which may still be too high
for a storage-limited sensor.

This limitation has been partially addressed by combining ef-
fective random sketching schemes to directly recover the covariance
matrix rather than the data stream itself [1, 13, 14]. In particular, a
low-complexity covariance sketching scheme has been developed in
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[1, 13, 14] that only takes a single energy sketch per sample by pro-
jecting it to a random rank-one subspace spanned by some sketch-
ing vector. By leveraging the ergodicity of the data stream, these
sketches are aggregated into a set of sketching measurements that
are linear with respect to the covariance matrix, and quadratic with
respect to the sketching vectors. Universal reconstruction perfor-
mance guarantees of the covariance matrix are established from a
near-optimal number of sketching vectors via convex optimization
by promoting low-dimensional covariance structures such as spar-
sity and low rank.

While the covariance sketching scheme in [1, 13, 14] is appeal-
ing for its low acquisition and storage complexities, the convex al-
gorithm used to recover the covariance matrix is computationally
expensive to be implemented in a streaming setting. The main con-
tribution of this paper is to propose an online algorithm to update the
estimate of a low-rank covariance matrix, by performing one round
of alternating projection between the observation constraint and the
low-rank constraint at each time the sketching measurements are
circulantly updated once. Moreover, to allow faster tracking when
the low-rank covariance matrix changes over time, we incorporate
a discounting mechanism in the aggregation procedure by geometri-
cally reweighting the historic sketches in a similar fashion to [6]. We
validate the performance of the proposed algorithm on direction-of-
arrival estimation for a unitary linear array, which achieves superior
performance from only a single energy sketch per sample.

The rest of this paper is organized as follows. Section 2 intro-
duces the covariance sketching scheme, and Section 3 describes the
proposed online algorithm. Numerical examples are demonstrated
in Section 4 and finally we conclude in Section 5.

2. COVARIANCE SKETCHING

In this section, we review the covariance sketching scheme proposed
in [1, 13, 14] for estimating low-rank covariance matrices of er-
godic data streams. Specifically, we use {xt}∞t=1 to represent a
high-dimensional data stream, where xt ∈ Cn is the data sample
generated at the tth time satisfying E[xt] = 0 and the covariance
E[xtxHt ] = Σ. Moreover, the covariance matrix Σ is assumed low-
rank or approximately low-rank. The prohibitively high rate at which
data are generated and the severely limited resources at the sensing
platforms force inference methods to function with as small memory
and computational costs as possible [2].

2.1. Covariance Sketching

We start by introducing a set of non-adaptive sketching vectors
{ai}m−1

i=0 , where each entry of ai ∈ Cn is generated from i.i.d.
zero-mean sub-Gaussian distributions, e.g. Gaussian or Bernoulli.
The covariance sketching scheme [1, 13, 14] requires only a single
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sketch per sample of the data stream from which the covariance ma-
trix can be efficiently estimated. At each time t ≥ 1, the covariance
sketching scheme consists of the following key steps:

1. Sketching: We choose a sketching vector indexed by `t =
mod (t−1,m), where mod (·) is the modulo function, and
observe a single quadratic sketch

st = (aH`txt)
2.

Note that only one pass of each data sample is required with
linear complexity to compute the sketch.

2. Aggregation: All sketches employing the same sketching
vector ai are aggregated and stored in a single sketching mea-
surement yi, which, due to stationarity, as t→∞, converges
to

yi = E[(aHi xt)2] = aHi E[xtxHt ]ai = a
H
i Σai, (1)

which is linear in Σ and quadratic in ai, i = 0, . . . ,m− 1.

In the above covariance sketching scheme, the data acquisition
stage in the sketching and aggregation steps makes no assumption
about the covariance structures and can be implemented in a fully
distributed and online manner without storing the entire data stream.
To be specific, denote the measurement at time t corresponding to
the sketching vector ai by yti , then it can be updated from yt−1

i and
nt−1
i as

yti =
1

nti

t∑
τ=1

st1{`τ=i} =
nt−1
i

nti
yt−1
i +

1{`t=i}
nti

st, (2)

where 1{·} is the indicator function, nti =
∑t
τ=1 1{`τ=i} = nt−1

i +
1{`t=i} counts the number of sketches employing ai. Also, yti con-
verges to yi as t tends to infinity yielding (1). The storage require-
ment is only m which can be made much smaller than the dimen-
sionality of Σ and doesn’t grow with time. Finally, it is worth noting
that the sketches are energy measurements which, using energy de-
tectors, are easier to measure and often more accurate than the phase
measurements for high-frequency signals in optical systems [15] and
wideband spectrum sensing [16]. This offers additional benefits of
the covariance sketching scheme for potential applications.

2.2. Covariance Estimation

In order to account for the noise introduced in the sketching process,
consider the noisy version of (1):

yi = a
H
i Σai + ηi = 〈Σ,aiaHi 〉+ ηi = 〈Σ,Ai〉+ ηi, (3)

whereAi , aiaHi is the corresponding rank-one measurement ma-
trix with respect to Σ which is quadratic in ai, and η , {ηi}m−1

i=0

denotes the bounded (adversarial) noise with ‖η‖1 ≤ ε. The mea-
surements can be expressed succinctly as

y = A(Σ) + η, (4)

where y = {yi}m−1
i=0 is a set of m measurements, and A(Σ) :

Cn×n → Cm is the linear operator mapping Σ to {〈Σ,Ai〉}m−1
i=0 .

To motivate the low-rank structure of Σ, we resort to the following
convex optimization algorithm:

Σ̂ = argmin
M�0

Tr(M) s.t. ‖y −A(M)‖1 ≤ ε, (5)

Algorithm 1 Covariance Tracking via Alternating Projection

Input: the data stream {xt}∞t=1, the sketching vectors {ai}m−1
i=0 ,

the covariance rank r;
Initialization: a random n × n rank-r PSD matrix Σ0; an all-zero

vector y0 = {y0i }m−1
i=0 ;

1: for t = 1, 2, . . . do
2: Update the sketching measurements by the covariance

sketching scheme (2) to obtain yt;
3: if mod (t− 1,m) = m− 1 then
4: Set k = dt/me;
5: Project the previous covariance estimate Σk−1 onto the

affine set S1 =
{
M : yt = A(M)

}
determined yt:

Qk = argmin
Q

∥∥∥Q−Σk−1
∥∥∥
F
, s.t. Q ∈ S1; (7)

6: Project Qk to the nearest rank-r PSD matrix to obtain
the current covariance estimate Σk:

Σk = argmin
rank(M)≤r

∥∥∥M −Qk
∥∥∥
F
, s.t. M � 0. (8)

7: end if
8: end for

where Tr(M) denotes the trace of M , and M � 0 denotes the
positive-semidefinite (PSD) constraint. It is shown in [1] that, as
soon as the number of measurements m exceeds the order of nr,
with high probability, the solution Σ̂ to (5) satisfies∥∥∥Σ̂−Σ

∥∥∥
F
≤ C1

Tr(Σ−Σr)√
r

+ C2
ε

m
, (6)

for all covariance matrices Σ with the best rank-r approximation
Σr , where c0, c1, C1 and C2 are universal constants.

3. COVARIANCE TRACKING

In a streaming data environment, it is highly desirable to maintain an
online estimate of the covariance matrix. Notice that the sketches (2)
can be updated in a fully online fashion, by updating yt = {yti}m−1

i=0

from yt−1 = {yt−1
i }m−1

i=0 via (2). While it is possible to directly
obtain an online estimate of the covariance matrix using yt via the
algorithm in (5), it is computationally expensive. However, given
that the measurements at consecutive times only differ slightly, it is
natural to consider an alternative procedure, which, incorporates the
previous covariance estimate as a warm-start to minimize compu-
tational costs in obtaining the current covariance estimate. In this
section, we devise an alternating projection scheme to update the
covariance estimate in a computation-efficient fashion.

3.1. Covariance Tracking via Alternating Projection

We focus on estimating and tracking a rank-r covariance matrix after
allm sketching measurements are updated circulantly once using the
covariance sketching scheme in Section 2.1. Let k = dt/me, which
counts the number of updates for each sketching measurements until
time t. Summarized in Algorithm 1, at each k, our algorithm per-
forms one round of alternating projection of the previous covariance
estimate Σk−1 between the measurement constraints and the struc-
tural constraints, based on the current sketching measurements yt.
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First, we project Σk−1 to the closest matrix in Frobenius norm sat-
isfying the affine constraint S1 = {M : yt = A(M)} by solving
(7), whose solution can be written as

Qk = Σk−1 −A∗(AA∗)−1
(A(Σk−1)− yt), (9)

where A∗(y) =
∑m−1
i=0 yiaia

H
i : Cm 7→ Cn×n is the conjugate

operator of A. Note that Qk computed from (9) is a Hermitian ma-
trix. We then project Qk to the nearest rank-r PSD matrix via (8),
whose solution can be found by computing the eigenvalue decompo-
sition (EVD) ofQk. Denote the EVD ofQk as

Qk =

n∑
i=1

ρki u
k
i (u

k
i )
H , (10)

whereuki and ρki are the corresponding eigenvectors and eigenvalues
in the descending order, for i = 1, . . . , n. Then the solution to (8)
can be described as

Σk =

r∑
i=1

max{ρki , 0}uki (uki )H . (11)

The computational complexity of Algorithm 1 per iteration mainly
comes from computing the top r eigenvectors and eigenvalues of
Qk, which is of much lower complexity than running (5). Further-
more, if the operator A can be chosen to satisfy AA∗(y) = y for
any y, (9) can be further simplified to

Qk = Σk−1−
m−1∑
i=0

(
r∑
i=1

max{ρk−1
i , 0}|aHi uk−1

i |2 − yti

)
aia

H
i ,

by plugging into (11). Therefore it is possible to exploit the in-
cremental approach in [17] to compute the top-r eigenvectors and
eigenvalues as the entries of yti are updated.

3.2. Discounted Aggregation in Covariance Sketching

When the covariance structure of the data stream evolves over time,
it is necessary to track these changes as agile as possible. To enable
faster tracking, we modify the aggregation step (2) by reweighting
the previous aggregate zt−1

i and the current sketch st, denoted by

zti =
(
(1− 1{`t=i}) + λ1{`t=i}

)
zt−1
i + st1{`t=i}

=

{
λzt−1
i + st, `t = i
zt−1
i , otherwise

, (12)

where λ is a discounting factor 0� λ ≤ 1 that discounts the previ-
ous data samples [6]. To see this, expand (12) over t and obtain

zti =

t∑
τ=1

λn
t
i−n

τ
i sτ1{`τ=i} = a

H
i

(
t∑

τ=1

λn
t
i−n

τ
i xτx

H
τ

)
ai,

where nti =
∑t
τ=1 1{`τ=i}. As t tends to infinity, zti converges to

zi = a
H
i

(
∞∑
p=0

λpE[xpxHp ]

)
ai =

1

1− λa
H
i Σai, (13)

which corresponds to measuring the covariance matrix Σ up to a
scaling factor determined by the discounting factor λ. In practice,
λ is usually selected as a constant close to 1, therefore the bias in-
troduced by the scaling is small. We apply the covariance tracking
algorithm similarly to the discounted aggregations by replacing step
2 in Algorithm 1 with (12), and demonstrate its performance in the
direction-of-arrival estimation in Section 4.3.

4. NUMERICAL EXPERIMENTS

We examine the performance of the proposed covariance tracking
algorithm in this section on both synthetic examples with fixed and
time-varying covariance matrices, and tracking direction-of-arrivals
in array signal processing.

4.1. Tracking a fixed covariance matrix

Let n = 20, r = 1 and m = 80. We generate the data samples in
the stream by xt = Ugt, where U ∈ Rn×r is a fix matrix com-
posed of i.i.d. standard Gaussian entries, and gt ∈ Rr is generated
with i.i.d. standard Gaussian entries. We also generate m sketch-
ing vectors {ai}mi=1 composed of i.i.d. standard Gaussian entries.
We first compare the performance of Algorithm 1 with running the
batch algorithm (5) using the online obtained sketching measure-
ments yt after all the m sketching measurements have been updated
once. We calculate the normalized mean squared error (NMSE) as
‖Σk −Σ‖F /‖Σ‖F , where Σ = UUT denotes the true covariance
matrix and Σk denotes the estimated covariance matrix using the re-
spective algorithms. Fig. 1 shows the average NMSE over 20 Monte
Carlo runs with respect to the data stream index normalized by m.
The proposed covariance sketching algorithm has a larger error at the
beginning of the data stream, due to the poor approximation during
the aggregation with insufficient samples, it approaches the perfor-
mance of the batch algorithm with the increase of time.
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Alternating Projection
Convex Optimization

Fig. 1. NMSE of covariance estimation with respect to the data
stream index using the proposed covariance sketching algorithm in
Algorithm 1 and the batch algorithm (5).

4.2. Tracking a time-varying covariance matrix

We evaluate the performance of Algorithm 1 for tracking a time-
varying covariance matrix. In this section, we show the perfor-
mances of our proposed covariance tracking algorithm when the co-
variance of the data stream changes abruptly over time.

Let n = 40, r = 3 and m = 600. Let each data sample be
xt = Ugt, where U is composed of i.i.d. standard Gaussian en-
tries and changes abruptly in the middle of the stream twice and gt
is randomly generated with i.i.d. Gaussian entries. We compare the
original aggregation scheme and the discounted aggregation scheme
with a discounting factor λ = 0.98. Fig. 3 (a) shows the average
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(a) Ground Truth (b) λ = 0.99 (c) λ = 0.98

Fig. 2. Direction-of-arrival estimation with respect to the data stream index using the proposed covariance sketching and tracking scheme.
(a) Ground truth of mode locations; (b) estimated mode locations with a discounting factor λ = 0.99; and (c) estimated mode locations with
discounting factor λ = 0.98.

NMSE over 20 Monte Carlo runs with respect to the data stream in-
dex normalized bym. The NMSE of the covariance estimate decays
faster for the original covariance sketching scheme initially, since
the sketching measurements converges faster to the desired measure-
ments. However, it responds slower to changes in the covariance
structure. On the contrary, the discounting mechanism allows us to
track the covariance changes in a timely fashion.
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Fig. 3. NMSE of covariance estimation with respect to the data
stream index when the covariance changes abruptly.

4.3. Tracking direction-of-arrivals

We evaluate the performance of the proposed covariance tracking
algorithm for tracking direction-of-arrivals in a unitary linear array
(ULA). Specifically, consider a ULA with n = 40 sensors, each data
sample can be represented as

xt = V Dgt, (14)

where V = [α(ω1), . . . ,α(ωr)] ∈ Cn×r is a Vandermonde ma-
trix composed of r = 4 columns where each column α(ω) =

[1, ej2πω, ..., ej2πω(n−1)]T corresponds to a mode with normalized

frequency ω ∈ [0, 1), D = diag{d} = diag{d1, ..., dr} ∈ Rr×r
is a diagonal matrix characterizing the strength of each mode, and
gt ∈ Cr is generated with i.i.d. Gaussian entries. We start the exper-
iment by setting ω = [0.1, 0.3, 0.325, 0.8] and d = [0.5, 1, 1, 0.4]
in the beginning of the scene, which was altered abruptly to ω =
[0.1, 0.3, 0.45, 0.7] and d = [0.5, 1, 0.8, 0.75] at the middle of the
scene. The ground truth is depicted in Fig. 2 (a), with color indicat-
ing the strength of the modes.

Our goal is to examine the proposed covariance sketching
scheme for estimating and tracking the set of modes ω = {ωj}4j=1.
We implement the sketching scheme with a set of m = 600 sketch-
ing vectors generated with i.i.d. standard Gaussian entries. We
choose discounting factors λ = 0.99 and λ = 0.98 for aggregation,
and run Algorithm 1 with an estimated rank r̂ = 6, which is a
slightly over estimation of the true rank r = 4. The mode loca-
tions are then estimated by running ESPRIT [18] on the principal
subspace of the estimated covariance matrix at each time.

Fig. 2 (b) and (c) show the estimated mode locations with re-
spect to the data stream index. It can be observed that the proposed
algorithm is capable of tracking the changes in the dynamic scene
from only a single energy sketch per sample, in particular, the two
close-located modes are separated clearly from the estimation. As
we decrease λ, the algorithm drops the old modes that are exiting
the scene (e.g. the mode at ω = 0.325) faster; however, it also takes
a longer time to track the weaker mode (e.g. the mode at ω = 0.8),
demonstrating an interesting performance trade-off.

5. CONCLUSION

We developed an efficient covariance tracking algorithm for the
recently proposed covariance sketching scheme to obtain online es-
timates of the covariance matrix of a high-dimensional data stream.
Our algorithm uses the previous estimate as a warm start, and
projects it first to the affine subspace determined by the updated
sketching measurements, and then projects it to the nearest low-rank
PSD matrix as the covariance estimate. Moreover, a discounting
mechanism is introduced in the aggregation procedure to improve
the tracking performance. Numerical examples are provided to
empirically validate the performance of the proposed algorithm.
Future work includes analysis of the theoretical performance of the
proposed tracking algorithm and applications in real-world data.
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