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ABSTRACT

This paper proposes a second-order discrete total generalized
variation (TGV) for arbitrary graph signals, which we call the
graph TGV (G-TGV). The original TGV was introduced as a
natural higher-order extension of the well-known total varia-
tion (TV) and is an effective prior for piecewise smooth sig-
nals. Similarly, the proposed G-TGV is an extension of the
TV for graph signals (G-TV) and inherits the capability of the
TGV, such as avoiding staircasing effect. Thus the G-TGV is
expected to be a fundamental building block for graph signal
processing. We provide its applications to piecewise-smooth
graph signal inpainting and 3D mesh smoothing with illustra-
tive experimental results.

Index Terms— Graph signal processing, total general-
ized variation (TGV), proximal splitting.

1. INTRODUCTION

The concept of graph signal explicitly models the connection
or relation among signal samples by assigning each of them
to each vertex of a graph. Since various types of data, such
as images and videos, traffic and sensor network data, mesh
data, and biomedical data, can be represented as graph sig-
nals, the framework of graph signal processing can provide
fundamental tools to analyze, compress, and process a broad
class of data in a unified way, see, e.g., [1, 2, 3, 4] and refer-
ences therein.

In many applications, one can only access noisy and/or
incomplete observations of a true graph signal, e.g., cortical
activation [5] and mesh surfaces obtained through a scanning
process [6], so that one needs to leverage some a priori knowl-
edge to estimate the true graph signal. This approach is usu-
ally realized through optimization involving priors, functions
reflecting the knowledge.

The total variation for graph signals (we call it the
graph TV (G-TV)) is defined as an absolute sum of the
discrete difference of a graph signal and is a prior suitable
for piecewise-smooth graph signals. It was first introduced
in [7] as an extension of the original total variation (TV)
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Fig. 1. Example of the staircasing effect in a graph signal: The
denoised graph signal by the G-TV (right) is too flattened and has
artifact boundaries compared with the original one.

[8], and its weighted generalizations were successively pro-
posed in [9, 10]. In [11], a new G-TV was developed for
directed graphs. Recently, a very general version of the G-TV
was introduced in [6], where the authors define their G-TV
in the dual domain and establish an efficient optimization
framework for it.

When we use the TV, the so-called staircasing effect, the
undesirable appearance of edges, often occurs. This is also
the case with the G-TV (see Fig. 1). To overcome this lim-
itation, the total generalized variation (TGV) was proposed
in [12] as a reasonable higher-order generalization of the TV,
which has been successfully applied to various image pro-
cessing applications [13, 14, 15, 16, 17, 18].1

The main purpose of the paper is to develop a second-
order TGV on graphs (we call it the graph TGV (G-TGV))
and apply it to graph signal restoration and smoothing. The
G-TGV is defined by incorporating several mathematical ele-
ments from graph theory (see, e.g., [19, 20]) into the TGV.
We also provide an efficient algorithm based on a primal-
dual splitting method [21, 22] for solving optimization prob-
lems involving the G-TGV. Since the G-TGV can be used
for restoration and smoothing of any undirected graph sig-
nals, there are many potential applications. Specifically, we
propose two applications: piecewise-smooth graph signal in-
painting and 3D mesh smoothing. Experimental results show
its superiority over the G-TV in the applications.

The rest of the paper is organized as follows. Sec. 2 is
devoted to establish the G-TGV and its utilization in inverse
problems of graph signals via optimization. We present appli-
cations of the G-TGV in Sec. 3 with illustrative experimental
results, and conclude the paper in Sec. 4.

1The TGV of second-order is mainly used.
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2. GRAPH TOTAL GENERALIZED VARIATION

2.1. Definition

We consider a weighted graph G = (V,E,W) with vertices
vi ∈ V and edges ei,j ∈ E ⊂ V × V , where the numbers of
vertices and edges are denoted by |V | and |E|, respectively,
and 1 ≤ i, j ≤ |V | are the indices of vertices such that i < j.
Each weight assigned to each edge ei,j is denoted by wei,j >

0 (the number of wei,j equals to |E|), and W ∈ R|E|×|E| is
the diagonal matrix containing all wei,j .

We also introduce the incidence matrix D ∈ R|E|×|V | of
a graph G, of which the entries are defined by

Dei,j ,vk
:=


−1, if i = k,

1, if j = k,

0, otherwise.

For readers’ convenience, we give a simple graph and its inci-
dence matrix in Fig. 2. It is known that D can be seen as the
discrete gradient operator for graph signals on G and satisfies
D⊤W2D = L, where L ∈ R|V |×|V | is the so-called graph
Laplacian matrix of a weighted graph G (see, e.g., [23]).

Let u = (u1, . . . , u|V |)
⊤ ∈ R|V | be a graph signal vector

where ui resides on vi. Based on the original TGV [12], we
newly formulate a second-order graph total generalized vari-
ation (G-TGV) for an arbitrary weighted graph G as follows:

TGVα
G(u) := min

p,q∈R|E|
α∥p∥1 + (1− α)∥D⊤Wq∥1

s.t. WDu = p+ q,

= min
q∈R|E|

α∥WDu− q∥1 + (1− α)∥D⊤Wq∥1,

where 0 < α < 1, and ∥ · ∥1 stands for the ℓ1-norm, i.e.,
the sum of absolute values of all the entries of (·). In this
definition, WDu corresponds to the (weighted) first-order
difference vector of the graph signal u, and p and q are its
portions such that WDu = p+q. This implies that D⊤Wq
in the right term is the (weighted) second-order difference
vector w.r.t. the portion q. As a result, the left term mea-
sures the total magnitude of a part of the first-order differ-
ence of u, and the right term evaluates the second-order dif-
ference of u w.r.t. the residual part of the first-order differ-
ence of u. Since D⊤Wq is a part of the Laplacian of u
due to Lu = D⊤W2Du = D⊤W(p + q), we believe that
the above definition is a natural incorporation of elements of
graph theory into the TGV.

As the original TGV, the G-TGV is obviously a proper
lower semicontinuous convex function2 over R|V |, and thus

2A function f : RN → R ∪ {∞} is called proper lower semicontinuous
convex if domf := {x ∈ RN | f(x) < ∞} ̸= ∅, lev≤α(f) := {x ∈
RN | f(x) ≤ α} is closed for every α ∈ R, and f(λx + (1 − λ)y) ≤
λf(x)+(1−λ)f(y) for every x,y ∈ RN and λ ∈ (0, 1), respectively. The
set of all proper lower semicontinuous convex functions over RN is denoted
by Γ0(RN ).

Fig. 2. A graph and its incidence matrix.

we will benefit from convex optimization techniques for solv-
ing problems involving the G-TGV in the next section.

2.2. Problem Statement

Consider the following graph signal observation model:

b = Φū+ n,

where Φ ∈ RK×|V | is a linear degradation operator (e.g.,
decimation), ū ∈ R|V | is an unknown original graph signal
on a given graph G, and n ∈ RK is an additive noise. Here
we assume that ū is piecewise-smooth.

To estimate ū, we propose to solve the following convex
optimization problem:

min
u∈R|V |

TGVα
G(u) s.t. u ∈ Rµ,µ and Φu ∈ Bb,ε, (1)

where

Rµ,µ := {x ∈ R|V || µ ≤ xi ≤ µ (i = 1, . . . , |V |)},

Bb,ε := {x ∈ RK | ∥x− b∥2 ≤ ε}.

The set Rµ,µ is a box constraint with µ < µ which represents
some known numerical range of ū (if such information is un-
available, set µ (µ) to a sufficiently small (large) value). Such
a box constraint also guarantees the existence of a minimizer
of (1). The set Bb,ε is a b-centered ℓ2-norm ball with the
radius ε > 0, which serves as a fidelity constraint w.r.t. the
observation b. Using a fidelity constraint instead of an addi-
tive fidelity term facilitates the parameter setting since ε is di-
rectly related to a statistical parameter of noise (e.g., variance)
and can be determined independent of what a prior function
is employed. Hence, solving the problem would bring a good
estimate of the original piecewise-smooth graph signal.

2.3. Optimization

We use a primal-dual splitting method [21, 22] to solve (1).
The method can solve optimization problems of the form:

min
x∈RN

f1(x) + f2(x) + f3(Ax), (2)

where f1 is a differentiable convex function with the β-
Lipschitzian gradient ∇f1 for some β > 0, f2 ∈ Γ0(RN ) and
f3 ∈ Γ0(RM ) are proximable3, and A : RM×N is a matrix.

3The proximity operator [24] of a function f ∈ Γ0(RN ) of an index
γ > 0 is defined by proxγf (x) := argminy∈X f(y) + 1

2γ
∥x − y∥22. If

an efficient computation of proxγf is available, we call f proximable.
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The algorithm is given by⌊
x(n+1) = proxγ1f2

[x(n) − γ1(∇f1(x
(n)) +A⊤y(n))],

y(n+1) = proxγ2f∗
3
[y(n) + γ2A(2x(n+1) − x(n))],

where f∗
3 the Fenchel-Rockafellar conjugate function4 of f3,

and γ1, γ2 > 0 satisfy 1
γ1

− γ2λ1(A
⊤A) ≥ β

2 (λ1(·) stands
for the maximum eigen value of ·). Under some mild condi-
tions on f2, f3, and A, the sequence (x(n))n∈N converges to
a solution to (2).

Using the indicator functions5 of Rµ,µ and Bb,ε, we can
rewrite (1) as

min
u∈R|V |,q∈R|E|

α∥WDu− q∥1 + (1− α)∥D⊤Wq∥1

+ ιRµ,µ(u) + ιBb,ε
(Φu), (3)

Now, let x := (u⊤ q⊤)⊤, and y := (y⊤
1 y⊤

2 y⊤
3 ) with

y1 ∈ R|E|, y2 ∈ R|V |, and y3 ∈ RK . Then, by defining
f1(x) := 0, f2(x) := ιRµ,µ

(u),

f3(y) := α∥y1∥1 + (1− α)∥y2∥1 + ιBb,ε
(y3),

A :=

WD −I
O D⊤W

Φ O

,

problem (2) is reduced to (3), i.e., (1).
The proximity operator of f2 is the metric projection onto

Rµ,µ (see footnote 5), i.e.,

[proxγιRµ,µ
(z)]i = [PRµ,µ(z)]i =


µ, if zi < µ

µ if zi > µ

zi otherwise.

Meanwhile, the proximity operator of f3 can be decomposed
into that of each term. The proximity operator of ∥ · ∥1 is
reduced to the so-called soft-thresholding operation:

[proxγ∥·∥1
(z)]i = [ST(z, γ)]i = sgn(zi)max{0, |zi| − γ},

where sgn denotes the signum function. As in the case of
ιRµ,µ , the proximity operator of ιBb,ε

is given by

proxγιBb,ε
(z) = PBb,ε

(z) =

{
z, if z ∈ Bb,ε,

b+ ε(z−b)
∥z−b∥2

, otherwise.

Hence, the proximity operators of f2 and f3 are computable
with O(|V |) and O(|E|+|V |+K), respectively, implying we
can efficiently solve (1) by the primal-dual splitting method.
Finally, we show the detailed algorithm in Algorithm 1.

4The Fenchel-Rockafellar conjugate function of f ∈ Γ0(RN ) is defined
by f∗(ξ) := supx∈RN {⟨x, ξ⟩ − f(x)}. The proximity operator of f∗ can
be expressed as proxγf∗ (x) = x− γproxγ−1f (γ

−1x).
5 For a given nonempty closed convex set C ∈ RN , the indicator func-

tion of C is defined by ιC(x) := 0, if x ∈ C; ∞, otherwise. Using the
indicator function, we can express a convex constraint as an additive term.
The proximity operator of ιC is equivalent to the metric projection onto C,
i.e., proxγιC (x) = argminy∈C ∥x− y∥2 =: PC(x) (∀γ > 0).

Algorithm 1: Primal-dual splitting method for (1)

input : u(0),q(0),y
(0)
i (i = 1, 2, 3)

output : u(n)

1 while A stopping criterion is not satisfied do
2 u(n+1) = PRµ,µ(u

(n) − γ1(D
⊤Wy

(n)
1 +Φ⊤y

(n)
3 ));

3 q(n+1) = q(n) − γ1(−y(n)
1 +WDy

(n)
2 );

4 y
(n)
1 ←

y
(n)
1 + γ2(WD(2u(n+1) − u(n))− (2q(n+1) − q(n)));

5 y
(n)
2 ← y

(n)
2 + γ2D

⊤W(2q(n+1) − q(n));
6 y

(n)
3 ← y

(n)
3 + γ2Φ(2u(n+1) − u(n));

7 y
(n+1)
1 = y

(n)
1 − γ2ST( 1

γ2
y
(n)
1 , α

γ2
);

8 y
(n+1)
2 = y

(n)
2 − γ2ST( 1

γ2
y
(n)
2 , 1−α

γ2
);

9 y
(n+1)
3 = y

(n)
3 − γ2PBb,ε(

1
γ2

y
(n)
3 );

10 n← n+ 1;

3. APPLICATIONS

We present applications of the G-TGV to graph signal in-
painting and 3D mesh smoothing with illustrative experimen-
tal results. We fixed γ1 and γ2 as 0.1 and 1

30γ1
in Algo-

rithm 1, which satisfies 1
γ1

− γ2λ1(A
⊤A) ≥ β

2 in the fol-
lowing applications. The stopping criteria of Algorithm 1 is
set to ∥u(n+1) − u(n)∥2 < 1.0 × 10−5. In all the experi-
ments, the parameter α of the G-TGV was simply chosen as
0.5, and the radius of Bb,ε was fixed to the oracle value, i.e.,
ε = ∥Φū − b∥2. We compared the G-TGV with the G-TV,
where optimization problems involving the G-TV were also
solved by the primal-dual splitting method. For the objective
evaluation, we use the (normalized) root mean square error
RMSE = ∥u(n)−ū∥2

∥ū∥2
(u(n) and ū stand for an estimated and

the original graph signals, respectively).

3.1. Graph Signal Inpainting

For the first application, we present graph singal inpainting
with denoising using the G-TGV. We corrupted a piece-wise
smooth signal on the Minnesota road network graph [25] with
an additive white Gaussian noise (standard deviation σ =
0.25), and then randomly masked it (the numerical range of
the original graph signal is from µ = 0 to µ = 1). Specifi-
cally, we consider the two cases: (i) 0% missing (only noise
corruption) and (ii) 50% missing. All the weights of the graph
are set to 1, i.e., W = I.

The results are shown in Fig. 3. The graph signals restored
by the G-TV exhibit the staircasing effect (see the third col-
umn from left). In contrast, minimizing the G-TGV results in
a good smoothing and their RMSEs are better than those of
the G-TV’s results (see the right end column), which demon-
strates the effectiveness of the G-TGV.
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Fig. 3. Graph signal inpainting results: The G-TGV well reconstructs the original graph signal without the staircasing effect.

σ = 0.05 RMSE = 1.792× 10−3 RMSE = 1.405× 10−3

σ = 0.1 RMSE = 2.946× 10−3 RMSE = 2.208× 10−3

Original Observation G-TV G-TGV
Fig. 4. 3D mesh smoothing results: The G-TGV produces smooth surfaces which are visually more pleasing than the G-TV’s results.

3.2. 3D Mesh Smoothing

We also apply the G-TGV to 3D mesh smoothing. In this
case, there are totally three graph signals (ūx, ūy, ūz) that
represent the spatial coordinates of a triangle mesh node. We
added a randomly oriented white Gaussian noise (σ = 0.05
or 0.1) to the original coordinates of the teapot triangle mesh
[6], i.e., the observations are given by (bx,by,bz) = (ūx +
nx, ūy+ny, ūz+nz), where nx,ny, and nz are uncorrelated
vectors of additive noises. The original coordinates are in the
range from µ = −3 to µ = 3. As the case of graph signa
inpainting in Sec. 3.1, all the weights of the graph are set to 1.

We show the results in Fig. 4. The resulting meshes by
minimizing the G-TV are too square-shaped compared with
the original one (see the third column from left). This is be-
cause the G-TV only measures the first-order difference of

the coordinates. On the other hand, the G-TGV well models
higher-order smoothness underlying mesh surfaces, leading
to much better smoothing results with lower RMSEs than the
G-TV’s results (see the right end column).

4. CONCLUDING REMARKS

We have proposed an extension of the TGV for graph sig-
nals (G-TGV). The G-TGV well evaluates the piecewise-
smoothness of signals on arbitrary undirected graphs, and
its design is suitable for inverse problems of graph signals
and enables efficient optimization. We have illustrated the
G-TGV over several applications, where it is superior to
the G-TV. The G-TGV can also be used as a constraint via
the technique proposed in [26], which would enhance the
potential utility of the G-TGV.
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