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ABSTRACT

Social networks often encode community structure using mul-
tiple distinct types of links between nodes. In this paper we
introduce a novel method to extract information from such
multi-layer networks, where each type of link forms its own
layer. Using the concept of Pareto optimality, community de-
tection in this multi-layer setting is formulated as a multiple
criterion optimization problem. We propose an algorithm for
finding an approximate Pareto frontier containing a family of
solutions. The power of this approach is demonstrated on a
Twitter dataset, where the nodes are hashtags and the layers
correspond to (1) behavioral edges connecting pairs of hash-
tags whose temporal profiles are similar and (2) relational
edges connecting pairs of hashtags that appear in the same
tweets.

Index Terms— Community detection, multi-layer net-
works, Twitter

1. INTRODUCTION

Social networks have become rich sources of data for network
analysis, where objectives might include community detec-
tion, edge prediction, node behavior prediction, and model
inference. However, it has become increasingly difficult to
extract meaningful information from these networks due to
the explosion in both the volume of data collected and the
diversity of available data types. In this paper we focus on
addressing the latter problem for the task of community detec-
tion; specifically, we consider networks containing multiple
layers of interactions between nodes.

For many social network applications, measures of associ-
ation between pairs of nodes may be available along multiple
dimensions. For example, graph edges may be observed di-
rectly in the data, or they may be inferred from actions of the
agents in the network. We make the distinction between rela-
tional links that are observed explicitly and behavioral links
that are inferred from ancillary data describing node behavior.
Examples of relational links between users might include ob-
served interactions over a period of time, mutually established
friendship connections, or email sender-reciever relationships.
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Likewise, behavioral links might be drawn between users who
post items with similar semantic content, like the same bands
or movies, or exhibit correlated activity over time. Further, it
is possible to have multiple types of relational and behavioral
links; for instance, there could be both a professional and per-
sonal social network over the same set of users. Networks with
multiple distinct edge types have been called multi-layer [1],
multi-level [2], multi-relational, or multiplex [3] networks.

In a multi-layer network, each layer may have a unique
topology. The simplest way to apply existing network analysis
algorithms (which generally assume homogeneous edges) is
to “flatten” the data, i.e., to combine all the different types of
links into a single-layer network. This can be accomplished
in various ways, for instance, by performing a logical AND or
OR on the layer-specific adjacency matrices, or by computing
their weighted (and possibly thresholded) average. However,
this approach has many hidden pitfalls; for example, if one
of the layers is noisier than the others then it probably should
not receive equal consideration when attempting community
detection.

A better strategy, we argue, is to directly analyze the multi-
layer networks without flattening. To show how this can be
done, we propose a new method of community detection for
multi-layer networks. Our approach employs multi-objective
optimization, taking into account multiple layers of network
structure, which is then used to find a community partition.
We show that this algorithm can provide significantly better
community detection than that obtained by standard single-
layer techniques.

The paper proceeds as follows. In Sec. 2 we define multi-
layer networks. In Sec. 3 a Pareto optimality approach to
multi-layer community detection is proposed, and in Sec. 4
we apply the proposed approach to Twitter data. Finally, we
discuss related work in Sec. 5 and give concluding remarks in
Sec. 6.

2. MULTI-LAYER NETWORKS

A multi-layer network G = (V, E) consists of vertices
V = {v1, . . . , vp}, common to all layers, and edges E =
(E1, . . . , EM ) in M layers, where Ek is the edge set for layer
k, and Ek = {ekvivj ; vi, vj ∈ V }. Each edge is undirected,
though extensions to the directed case are not difficult. The
multi-layer degree of a node i is di ∈ RM , with each entry
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[di]k being the degree of node i on layer k.
The adjacency matrix and degree matrix are defined as

usual for each layer:

[[Ak]]ij = ekvivj Dk = diag([d1]k, [d2]k, . . . , [dp]k) (1)

Note that Dk is simply a p× p diagonal matrix with the layer-
specific node degrees on the diagonal.

3. COMMUNITY DETECTION VIA
MULTIOBJECTIVE OPTIMIZATION

Many existing community detection algorithms involve op-
timization [4]. Methods that fall into this category include
spectral algorithms, modularity methods, and methods that
rely on statistical inference, particularly those that try to maxi-
mize a likelihood function. It seems natural that a multi-layer
generalization of such algorithms might somehow combine the
optimization objective functions as applied to each individual
layer; this is the basis of multi-objective optimization.

More formally, let community structure in a network be
described by a node partition C, where C(i) = k means that
node i is in part k. Single-objective optimization methods of
community detection seek to find the partition argminCf(C)
that minimizes an objective function f (which depends inter-
nally on the network structure). In the following we consider
the two community case; more communities can be found by
a recursive use of the algorithm.

Now consider a two-layer network, and let f1 and f2 be
objective functions for the two layers. One obvious way of
combining the layers would be to minimize the linear com-
bination αf1(C) + (1 − α)f2(C) over C, where α ∈ [0, 1].
However, linear combination may be restrictive, especially
when the objective functions are complex. A more general
approach is instead to seek the Pareto optimal solutions of the
multi-objective minimization problem:

Ĉ = argminC [f1(C), f2(C)] . (2)

A solution to the multi-objective optimization problem (2) is
said to be weakly Pareto optimal (or weakly non-dominated)
if it is not possible to decrease any objective function without
increasing some other objective function [5, 6]. More formally,
a solution C1 dominates a solution C2 if fi(C1) ≤ fi(C2) for
every objective function fi and there exists some j such that
fj(C1) < fj(C2). The first Pareto front is the set of weakly
non-dominated points.

Calculating an exact Pareto front is, in general, a challeng-
ing task. The most popular approximate methods are genetic
algorithms, which employ biologically inspired heuristics to
attempt to transform randomly selected seed cases into solu-
tions on the Pareto front using propagation. More details can
be found in [7, 8] and the references therein. One disadvan-
tage to genetic approaches is that they are not deterministic.
Additionally, there is no guarantee that any of the Pareto front

Input: f1, f2
Obtain optimum solutions C∗

1 , C
∗
2 for each layer

Initialize C = C∗
1

repeat
for i : C(i) 6= C∗

2 (i) do
Cnew ← C, Cnew(i)← C∗

2 (i)
cost(i)← f2(C

new)− f2(C)
end for
i∗ ← argmini cost(i)
C(i∗)← C∗

2 (i
∗)

until C = C∗
2

Output: non-dominated solution values taken by C

Fig. 1. Proposed algorithm for Pareto front identification.

will be correctly identified. Finally, most genetic algorithms
deal with real-valued decision variables, while the community
detection problem has a discrete decision space.

The alternative strategy employed in this paper is based on
the Kernighan-Lin node swapping technique [9]. The objec-
tive is to find solutions that are approximately Pareto optimal.
If it is possible to obtain a sample of solutions that are likely
to be on or near the front, these points can be sorted for non-
domination very quickly [7]. In this way, a large set of solu-
tions is filtered to find candidates that are potentially Pareto
optimal and worth further consideration. Figure 1 shows the
proposed algorithm.

For community detection, the objective is to minimize the
ratio-cut fk for each layer k = 1, 2:

fk(C) =
1

2

2∑
k=1

cut(C)

|{i : C(i) = k}|
(3)

cut(C) =
∑

C(i)=1,C(j)=2

[Ak]ij (4)

A relaxed version of this objective function can be solved by
performing an eigendecomposition on the Laplacian Li =
Di −Ai. More details can be found in [10].

4. TWITTER DATASET

The proposed algorithm was applied to a month of data from
Twitter. A two-layer network on hashtags was developed using
tweets from October 2012. The data was obtained from the
Twitter stream API at gardenhose level access, which corre-
sponds to 10% of all tweets over the month. A list of hashtags
and the users who tweeted them was created for each day, as
well as the volume (i.e., number of observed occurrences) of
each hashtag per day.

Hashtags that were directly connected with the presidential
election or politics were chosen out of a list of the most popular
hashtags for the month, which yielded 48 hashtags. Figure 2
shows an example of two network layers for one day on the
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(b) Hashtag User Layer

Fig. 2. A network visualization of two layers of the hashtag
dataset for October 10th, 2012. This example shows the dif-
fering topologies generated by different links in a network.
While we see some similarities—for instance, nodes 38, 39,
and 32 have high degree centralities in both networks—these
networks have many differences, the most obvious being that
the volume layer is not even fully connected, while the user
layer is fully connected and has a diameter of only 6.

original set of 48 hashtags. In order to include some higher
order connections, the list was expanded by including hashtags
whose volume per day behaved similarly over the month as
the first 48; this grew the network to 515 tags.

Initially, the total volume of the hashtags was studied over
time, and real events were compared with the profile; this is
shown in Figure 3. Some events are correlated with volume;
Hurricane Sandy falls on the two day period with the largest
hashtag volume. The second presidential debate also corre-
sponds to a spike in hashtag volume. In contrast, the first
presidential debate is not an identifiable event in the volume
plot.
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Fig. 3. Volume of observed usage of the 515 political hashtags
along with an event timeline for October 2012. Notice that
while we can see that some events correlate with hashtag
usage for our dataset, this is not true for all events that might
be expected to affect political hashtags.

User Layer

#SystSci

#DC

#ICASSP2015

U
se

r 1

U
ser 2

Volume Layer

#SystSci

#DC

#ICASSP2015

User 1: #ICASSP2015,
#SystSci
User 2: #ICASSP2015,
#DC

time

Volume
#ICASSP2015

#DC

#SystSci

Fig. 4. The two layers of the Twitter hashtag network are
illustrated. At the top is the relational layer where a link
between two hashtags indicates that at least one user used both
hashtags in the same Tweet. At the bottom is the behavioral
layer where a link indicates similarity in the hashtag usage
volume over time.

A time series of two-layer networks was created with hash-
tags as the nodes. Specifically, 31 two-layer networks were
created by aggregating daily Tweet data over each day in the
month. The first layer linked two hashtags if any user used
both the hashtags in that particular day. This layer is referred
to as the hashtag user layer. The second layer linked two
hashtags if they had similar volume profiles over time. In-
tuitively, two hashtags would have a link with each other if
they were popular or unpopular at the same time. So as not to
take into account too much past data, the volume correlation
was calculated using a moving window of 5 days. A Pearson
correlation coefficient was used to calculate the correlations
in volume for each pair of hashtags; the correlations then un-
derwent a Fisher transformation and were thresholded by a
value of 1.3859 which corresponds to an approximate 5% false
positive rate (in the bivariate normal case) when testing for the
presence of a positive correlation [11]. This layer is referred to
as the hashtag volume layer. Figure 4 demonstrates pictorially
the creation of the two layers, using a simple dataset of three
hashtags.

We will show that one is able to obtain more informa-
tion by the proposed Pareto multi-layer analysis methods than
when the two layers are analyzed separately. To this end, the
graph-cut partitions (4) were computed for each day. We also
computed approximately Pareto-optimal partitions by combin-
ing the single-layer solutions using Algorithm 1, and selected
a single partition by using the approximate midpoint of the
Pareto front. The Adjusted Rand Index (ARI) [12] was then
used to compare partitions on different days and see how hash-
tag relationships change over time. The ARI measures how
similar partitions are, and can vary between -1 and 1.

Figure 5 shows heat maps of all the ARI indexes, both for
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(c) Combined Network

Fig. 5. The more highly resolved block structure in combined network heatmap clearly indicates that the hashtag community
structure remains quite stable and coherent over the first 15 days of October but then breaks up into smaller clusters of coherency
over the remainder of the month. This may reflect the change of public opinions after the second Presidential debates (October
16) and the effect of Hurricane Sandy (October 28) on Twitter hashtag volume and usage.

the single layers considered separately as well as for the pro-
posed algorithm. The hashtag user layer reflects fairly stable
correlation among the two clusters until day 16, where there is
a phase transition. Note that this phase transition also occurs
on the volume layer heatmap. There is not much similarity
between days in the user network, implying that there is not
an optimal stable two cluster solution when considering the
hashtag user layer alone, and it is difficult to extract real events.

In the hashtag volume layer heatmap, some community
structure over days are highly correlated with each other. In
particular, the days on which Hurricane Sandy occurs have
communities that are highly correlated. It is also interesting to
note that the communities at the end of the month are nothing
like the bisected communities at the beginning, which implies
considerable temporal evolution in the network. There is also
more sparsity in the hashtag volume layer heatmap; conse-
quently it may be possible to detect events more easily using
this network.

The evident block structure in the Pareto combined
heatmap shows that the multi-layer algorithm eliminates
similarities between the first and second half of the months.
The Pareto combined solution holds attributes from both the
hashtag volume layer and hashtag user layer; the structural
patterns that were present in the latter half of the month of the
hashtag volume network are also present in the combined solu-
tion. The first half of the month also has some self-similarity,
which is seen in the hashtag user layer. However, the proposed
multi-layer algorithm was able to pick out some days that were
more highly correlated than in either of the single layer solu-
tions. In particular, days 3-5 are more highly correlated in the
combined solution; October 3rd was the day of the first debate.
Interestingly, the layers jointly reveal correlations between
days not visible in the independent single layer analyses.

5. RELATED WORK

With the advent of large data, there has been more opportunity
to explore this multi-layer structure. There has been some work
in the modeling and representation of multi-layer networks,
and how it relates to other studied problems [13, 3]. While
there is a large body of work in single-layer community detec-
tion [4], the multi-layer community detection literature is less
comprehensive. Hypergraphs have been studied from a spec-
tral perspective [14], which can be useful when dealing with
a multi-layer structure. Some work in applying single-layer
modularity methods to multi-layer structures is also available
[15]. For more information, see [3]. This technique was also
used in [16].

Multi-objective optimization has a long history [8]. Here,
we are only interested in a sorting algorithm used to find points
that are possibly Pareto optimal; this is called non-dominated
sorting. The method used in this paper is part of the evolution-
ary algorithm described in [7]. Some interesting application
work has been done using multi-objective optimization [17],
including supervised and unsupervised learning.

6. CONCLUSION

Multi-level network analysis is of growing interest as we are
faced with increasingly complex data. In this paper, a method
was introduced for finding communities in a multi-layer struc-
ture; it was demonstrated on a Twitter hashtag dataset and
shown to deliver results that significantly differ from single
layer analysis alone. The framework described can also be
applied to other single-layer algorithms for the multi-layer
setting.
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