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ABSTRACT

We propose a novel model for rank aggregation from pair-

wise comparisons which accounts for a heterogeneous pop-

ulation of inconsistent users whose preferences are different

mixtures of multiple shared ranking schemes. By connecting

this problem to recent advances in the non-negative matrix

factorization (NMF) literature, we develop an algorithm that

can learn the underlying shared rankings with provable sta-

tistical and computational efficiency guarantees. We validate

the approach using semi-synthetic and real world datasets.

Index Terms— Rank aggregation, nonnegative matrix

factorization, extreme point finding, random projection

1. INTRODUCTION

The classical rank aggregation problem aims to generate a

single “good” ranking of all items from partial rankings (e.g.,

pairwise comparisons) provided by a population of users.

This type of problem arises in social choice, recommendation

systems, meta search, ad placement, etc. [1–13].

The problem of estimating rankings from pairwise com-

parisons data has been extensively studied. A prominent set-

ting is one in which individual user rankings in a homoge-

neous population are modeled as independent drawings from

a probability distribution over all rankings which is centered

around a single global ranking and decays with some notion

of distance from the global ranking. Efficient algorithms have

been developed to estimate the global ranking under a variety

of probabilistic models [3–7, 11–13].

In order to account for the heterogeneity in the user popu-

lation, [1, 2] considered models with multiple prevalent rank-

ings and proposed consistent combinatorial algorithms for es-

timating the rankings. The mixture of Mallows model that

was recently studied in [14, 15] also considers multiple con-

stituent rankings. In all these multiple rankings settings, how-

ever, each user is associated with only one ranking sampled

from the mixture model and each user is viewed as being

consistent across time in generating all pairwise comparisons.
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While this model captures shared factors in a user population

that may influence user behavior, it does not capture ranking

inconsistencies of users across time especially for very simi-

lar items. To capture this effect, in Sec. 2 we propose a new

model which accounts for a heterogeneous population of in-

consistent users whose preferences are different mixtures of

multiple shared ranking schemes. The new model subsumes

those in [1, 2] as special cases. We develop a computation-

ally and statistically efficient algorithm to consistently esti-

mate the shared rankings in Sec. 3, and demonstrate competi-

tive performance on semi-synthetic and real-world datasets in

Sec. 4.

2. MIXTURE OF SHARED RANKINGS

Consider a universe of Q items U := {1, . . . , Q}, e.g.,

movies from Netflix or products from Amazon. Let P =
{{i, j} : i < j, i, j ∈ U} be the set of all the unordered

pairs of items. We consider a population of M users in which

each user compares N ≥ 2 pairs of items. 1 We denote the

n-th comparison result of user m: wm,n, by an ordered pair

(i, j), if user m compares item i and j and prefers i over

j. The choice model for each user, although being distinct,

is modeled as arising from a probabilistic mixture of K to-

tal rankings over the Q items that are shared among the M
users. Let β1, . . . , βK denote the K prevailing total rankings

as permutations of the Q items, and let the probability vector

θm denote the user-specific weights over the K rankings for

user m. We adopt the convention that βk(i) is the position

of item i in the ranking βk and item i is preferred over j
if βk(i) < βk(j). The generative model for the pairwise

comparisons from each user m = 1, . . . ,M is as follows,

1. Sample a K dimensional weight vector θm from a prior

distribution Pr(θ);

2. For each comparison n = 1, . . . , N :

(a) Sample a pair of items {i, j} from µ.

(b) Sample zm,n ∈ {1, . . . ,K} ∼ Multinomial(θm).

(c) If βzm,n
(i) < βzm,n

(j), then wm,n = (i, j), oth-

erwise wm,n = (j, i).

1 We assume that pairs of items i, j for comparison are independently

drawn from a distribution µ on P and µi,j > 0 for all i, j pairs.
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For convenience, we represent the K rankings by a W×K
nonnegative ranking matrix β whose W = Q(Q − 1) rows

are indexed by all the ordered pairs (i, j). The entries of β are

determined as β(i,j),k = I(βk(i) < βk(j)). The k-th column

of β is therefore an equivalent representation of the ranking

βk. We denote by P a W×W diagonal matrix with the (i, j)-
th diagonal component P(i,j),(i,j) = µi,j . We then denote

by θ the K ×M dimensional weight matrix whose columns

are the mixing weights θm of each user over the K rankings.

Finally, we denote by X the W ×M empirical comparisons-

by-user matrix where X(i,j),m denotes the number of times

that user m compares pair {i, j} and prefers item i over j.

Then, given X and K , our primary goal is to estimate the

ranking matrix β, i.e., the rankings β1, . . . , βK .

3. AN NMF APPROACH TO LEARNING

We connect the problem of estimating the ranking matrix β

from the empirical aggregate comparisons matrix X to an

NMF problem by examining the asymptotic structure of the

empirical second-order moments of the columns of X, i.e., a

co-occurrence matrix of pairwise comparisons. Specifically,

let X̃ and X̃
′ be obtained from X by first randomly parti-

tioning the set of all comparisons of each user into two dis-

joint equal-sized subsets (which are then independent by con-

struction) and then re-scaling the rows to make them row-

stochastic. Using the results in [16], it can be shown that

MX̃
′
X̃

⊤ M→∞
−−−−−−−−−→
almost surely

B̄R̄B̄⊤ =: E, (1)

where B̄ = diag−1(Ba)B diag(a), B = Pβ, R̄ =
diag−1(a)R diag−1(a), and a and R are, respectively, the

K×1 expectation and K×K correlation matrix of the weight

vector θm. To exclude redundant rankings and ensure unique

identifiability, R̄ is assumed to have full rank.

A new approach to efficiently and consistently estimate B

from a consistent estimate of the W ×W dimensional matrix

E has emerged in a recent line of work on nonnegative matrix

factorization [16–19]. A key ingredient of this approach is the

so-called separability condition which in our context of rank-

ings translates to the condition that for each k = 1, . . . ,K ,

there exists some row, i.e., some ordered pair (i, j), such that

β(i,j),k > 0 and β(i,j),l = 0, ∀ l 6= k. In other words, for each

ranking, there exist at least one “novel” pair of items {i, j}
such that i is uniquely preferred over j in that ranking while

j is ranked higher than i in all the other rankings. When this

property holds, we say that the W × K ranking matrix β is

separable. The separability of β is equivalent to the separabil-

ity of B. Figure 1 shows an example of a separable ranking

matrix β with Q = 3,W = 6 and K = 3 rankings. The

ordered pair (1, 3) is novel to ranking β1, the pair (2, 1) to

β2, and the pair (3, 2) to β3. The separability condition has

also appeared, albeit implicitly in a different form, in [1, 2]

within the context of rank aggregation. Similar to the results

in [1, 2] it can be shown that the separability condition will

be satisfied with high probability for all K ≪ Q when the K

Fig. 1. A separable ranking matrix and the underlying geo-

metric structure for the row vectors of E.

underlying rankings are sampled uniformly from the set of all

Q! permutations. We have observed such conditions to hold

approximately in our experiments.

If the separability condition is satisfied and R̄ has full

rank, then the row vectors of E have an intriguing geomet-

ric property which is illustrated in Fig. 1. The rows of E that

correspond to novel pairs are the extreme points of the con-

vex hull formed by all the row vectors of E. Once the novel

pairs of K distinct rankings are detected, the ranking matrix

β can be estimated in a straightforward manner by express-

ing the non-novel rows of E as convex combinations of the

novel rows via least squares [16, 17]. We adopt the approach

proposed in [16, 19] to efficiently detect all the novel pairs

using random projections. The main steps are outlined in Al-

gorithm 1 and expanded in detail in Algorithms 2, 3, and 4.

As in [16, 19], Algorithms 2 and 3 produce estimates of

B as B̂. To obtain an estimate of the binary ranking matrix

β, we note that since B = Pβ, µi,j = µj,i, and β(i,j),k +
β(j,i),k = 1, therefore

β(i,j),k =
B(i,j),k

B(i,j),k +B(j,i),k
. (2)

This motivates Algorithm 4 that produces β̂ as an estimate

of the ranking matrix β. For a finite number of users M , the

estimate β̂ is not guaranteed to be a binary matrix. We obtain

a binary matrix by simply rounding each element to 0 or 1.

The proposed approach inherits the asymptotic consistency

and statistical and computational efficiency properties as in

[16, 20]. Formally, Suppose that β is separable and R̄ is full

rank. Then Algorithm 1 is polynomial in all model parame-

ters, and consistently recovers β element-wise up to a column

permutation as the number of users M →∞.

4. EXPERIMENTAL RESULTS

4.1. Semi-synthetic simulation
We first use a semi-synthetic dataset to validate the perfor-

mance of the proposed approach. We focus the collaborative

filtering application where the mixture models have demon-

strated superior performance [21]. In order to match the di-

mensionality and the other characteristics that are representa-

tive of real-world examples, we generate the semi-synthetic
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Algorithm 1 Ranking Recovery (Main Steps)

Input: Pairwise comparisons X̃, X̃′(W ×M); Number of

rankings K; Number of projections P ; Tolerance parame-

ters ζ, ǫ > 0.

Output: Ranking matrix estimate β̂.

Set of Novel Pairs I ←NovelPairDetect(X̃, X̃′,K, P, ζ)

B̂ ←EstimateRankings(I,X, ǫ)
β̂ ←PostProcess(B̂)

Algorithm 2 NovelPairDetect (via Random Projections)

Input: X̃, X̃′; number of rankings K; number of projections

P ; tolerance ζ;

Output: The set of all novel pairs of K distinct rankings I.

Ê←MX̃
′
X̃

⊤

∀(i, j), J(i,j) ← {(s, t) : Ê(i,j),(i,j) − 2Ê(i,j),(s,t) +

Ê(s,t),(s,t) ≥ ζ/2},
for r = 1, . . . , P do

Sample ur ∈ R
W from an isotropic prior

q̂(i,j),r ← I{∀(s, t) ∈ J(i,j), Ê(s,t)ur ≤ Ê(i,j)ur} ,

∀(i, j)
end for

q̂(i,j) ←
1
P

∑P

r=1 q̂(i,j),r , ∀(i, j)
k← 0,l← 1, and I ← ∅
while k ≤ K do

(s, t)← index of the lth largest value among q̂(i,j)’s
if (s, t) ∈

⋂
(i,j)∈I

J(i,j) then

I ← I ∪ {(s, t)}, k ← k + 1
end if

l← l + 1
end while

Algorithm 3 EstimateRankings

Input: I = {(i1, j1), . . . , (iK , jK)} the set of novel pairs of

K topics; X, X′; precision ǫ
Output: B̂: the estimate of B.

Y = (X̃⊤

(i1,j1)
, . . . , X̃⊤

(iK ,jK))
⊤,

Y
′ = (X̃′⊤

(i1,j1)
, . . . , X̃′⊤

(iK ,jK))
⊤

for all (i, j) pairs do

Solve β̂(i,j) ← ( 1
M
X(i,j)1) argminbM(X̃(I,J) −

bY)(X̃′

(I,J) − bY
′)⊤

Subject to bk ≥ 0,
∑K

k=1 bk = 1, With precision ǫ
end for

B̂ ←column normalize β̂

pairwise comparisons dataset using a benchmark movie star-

ratings dataset, Movielens [22] which has approximately 1
million ratings for 3952 movies from M = 6040 users.

We follow [4] and [14] and generate the semi-synthetic

dataset as follows. We consider the Q = 100 most frequently

rated movies and train a latent factor model on the star-ratings

Algorithm 4 Post Processing

Input: B̂

Output: β̂ as the estimate of β

β̂(i,j),k ←
B̂(i,j),k

B̂(i,j),k+B̂(j,i),k

β̂(i,j),k ← Round[β̂(i,j),k]

data using a state-of-the-art probabilistic matrix factorization

algorithm [21, 23]. This approach is selected for its state-of-

the-art performance on many real world collaborative filter-

ing tasks. This procedure learns a Q×K movie-factor matrix

whose columns are interpreted as scores of Q movies over the

K latent factors[4, 21]. By sorting the scores of each column

of the movie-factor matrix, we obtain K rankings for gener-

ating the semi-synthetic dataset. We set K = 10 as suggested

by [14, 21]. We note that the resulting ranking matrix β sat-

isfies the separability condition.

To generate the semi-synthetic data, we simply set µi,j =

1/
(
Q

2

)
so that all the pairs are equally likely. We adopt

the Dirichlet prior for θm as suggested by [14]. The cor-

relation matrix R of the Dirichlet distribution has full rank

[16, 18]. The parameters αk’s of the Dirichlet distribution

Pr(θm|α) = 1
C

K∏
k=1

θαk

k , are determined by αk = α0ak. The

probability vector a = [a1, . . . , aK ]⊤ is the expectation of θ

and α0 > 0 controls the sparsity of θm. We set α0 = 0.1 and

sample a uniformly from the K = 10 dimensional simplex

for each random realization. We fix N = 300 comparisons

per user to approximate the observed average pairwise com-

parisons in the Movielens dataset and vary M .

We measure the performance by the standard ℓ1 error be-

tween the ground truth ranking matrix β and the estimate β̂.

Since the output of the proposed approach is determined only

up to a column permutation, we use bipartite matching based

on ℓ1 distance to match the columns of β and β̂. We note that

due to the way β is defined, the ℓ1 error metric is equivalent

to the widely-used Kendall’s tau distance between two rank-

ings which is proportional to the number of pairs in which two

ranking schemes differ. We further normalize the ℓ1 error by

W = Q× (Q− 1) so that the error measure for each column

is a number between [0, 1].

We compared our proposed algorithm (denoted by RP)

against the algorithm proposed in [1, 2] (denoted by FJS) for

estimating the ranking matrix. This is the most recent algo-

rithm with consistency guarantees for K > 1. We compared

how the estimation error varies with the number of users M .

For each setting, we average over 10 Monte Carlo runs. The

estimation errors as a function of the number of users M are

depicted in Fig. 2. Evidently, our algorithm shows superior

performance over FJS. More specifically, since our ground

truth ranking matrix is separable, as M increases, the esti-

mation error of RP converges to zero, and the convergence is
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much faster than FJS. We note that only for M ≥ 100, 000
does the error of the FJS algorithm eventually start approach-

ing 0.
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Fig. 2. The normalized ℓ1 errors of the ranking matrices,

as functions of M , estimated by RP and FJS from the semi-

synthetic dataset with Q = 100, N = 300,K = 10.

4.2. Movielens dataset
In this section, we apply the proposed algorithm to the real-

world Movielens dataset introduced in Sec. 4.1. We consider

two tasks: (1) new rating prediction, and (2) new user predic-

tion. We focus on the Q = 100 most frequently rated movies

as in Sec. 4.1 and obtain a subset of 183, 000 star-ratings from

M = 5940 users. To generate pair-wise comparisons from

the star-rating data, for each user m, we select pairs of movies

i, j that user m rated, and compare the star-ratings of the two

movies to generate comparisons, as motivated by [4, 14].

To select pairs of items to compare, we consider two

methods: (a)(Full) all pairs of movies that a user has rated,

or (b)(Partial) randomly select 5Nstar,m pairs of items where

Nstart,m is the number of movies user m has rated.

To compare a pair of movies for a user, wm,n = (i, j) if

the star-rating of i is higher than j. To deal with the case when

the two ratings tie, we consider three strategies: (i)(Both)

generate both wm,1 = (i, j) and wm,2 = (j, i), (ii) (Ignore)

generate no comparison, and (iii) (Random) randomly gen-

erate one of wm,1 = (i, j) and wm,2 = (j, i) with equal prob-

ability.

New comparison prediction: this task is to predict

new comparisons for users whose comparisons have been

observed in the training set. We followed the training/testing

split as in [21, 23]. In such a split, both training and testing

data contain ratings from all the M = 5940 users. We con-

vert both the training and testing star-rating data to pairwise

comparisons independently.

We evaluate the performance by the predictive log-

likelihood of the testing data, i.e., Pr(wtest|wtrain, β̂).

Given the estimate β̂, we follow [16, 18] to learn a Dirichlet

prior model. We then apply the Gibbs Sampling based ap-

proximation proposed in [24, 25] to calculate the prediction

log-likelihood.

We compare against the rankings estimated by the FJS

algorithm. Figure 3(upper) summarizes the results for dif-

ferent strategies in generating the pairwise comparisons with

K = 10 held fixed. The log-likelihood is normalized by the

total number of pairwise comparisons in the corresponding

testing set. As depicted in Fig. 3 (upper), the log-likelihood

produced by the proposed algorithm RP is higher, by a large

margin, compared to FJS. The predictive accuracy is robust to

how the comparison data is constructed.
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Fig. 3. The Normalized log-likelihood for K = 10 under

different settings for (upper) new comparison prediction and

(lower) new user prediction on the Movielens dataset.

We also consider the performance as function of K
(Fig. 4). The results validate the superior performance and

suggest K = 10 is a reasonable parameter choice.
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Fig. 4. The normalized log-likelihood for Full+Ignore con-

struction strategy for different settings of K for new compar-

ison prediction in the Movielens dataset.

New user prediction: this task is to predict the com-

parisons of new users. Following [14], we split the first 4000
users in the Movielens dataset for training, and the remain-

ing 2040 users for testing. We focus on the Q = 100 most

frequently rated movies and obtain 3986 users in training and

1994 in testing that each has rated at least two movies. We

use the held-out log-likelihood, i.e., Pr(wtest|β̂) to measure

the performance. The log-likelihoods are calculated using the

approximation method proposed in [24]. We compare our al-

gorithm RP with the FJS algorithm as in the previous task.

The log-likelihoods are then normalized by the total number

of comparisons in the testing phase. Motivated by the results

in the previous task, we fix the number of rankings at K = 10.

The results which are summarized in Fig. 3 (lower) are con-

sistent with the results for the previous task.
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