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ABSTRACT
A promising approach when dealing with massive data sets is to
apply randomized dimensionality reduction and then operate in
lower dimensions. This paper deals with the randomized linear
regression task in the case where the available data are sporadically
corrupted. Instead of relying to minimization of norms, which are
robust to outliers, an alternative route is taken. Building upon the
observation that outliers can be detected, while operating in a
low dimensional randomized projections produced embedding, a
mechanism for iteratively detecting and excluding corrupted data
is proposed. As a result, the linear regression is performed using
conventional LS approximation, without the need to resort to linear
programming-based ℓ1 norm minimization tasks.

Index Terms— Robust Regression, Randomized algorithms

I. INTRODUCTION
Linear regression based on Least Squares (LS) approximation

(known as ℓ2 regression) has been for years a major tool for data
analysis, modeling and prediction in various fields such as data
mining and machine learning. However, the ever-increasing volume
and complexity of the data, associated with a number of modern
applications in the big data era, poses certain challenges; when
the data dimension is large and/or the number of data vectors is
much larger than the data dimension, then computing the exact LS
solution can be quite cumbersome if not infeasible. Randomized
methods for dimensionality reduction pave the way for solving
efficiently and in good approximation the linear regression problem
for large-scale data applications [1], [2], [3], [4]. Two are the
major approaches, which have been followed so far. According to
the first one, referred to as randomized projections, the available
data are linearly combined in a randomized fashion in order to
work with a lower number of vectors, which is manageable for
efficient processing with the available computational and storage
resources. The second one, known as randomized sampling, among
the whole lot of data vectors, it randomly picks, usually according
to a data-derived sampling distribution, a small number of them
for use in the regression task. Both approaches aim at reducing the
regression problem by working on a low-dimensional embedding,
which approximately preserves aspects of the underline geometry,
such as pairwise distances [2].

Often in practice, the available data are sporadically corrupted
or hit by heavy-tailed distributed noise, rendering some of them
to outliers. This can be considered as being typical in Big Data
applications. In the presence of outliers, the performance of LS
minimization can be severely degraded due to the large residuals
appearing whenever an outlier hits. As a result, one has to resort to
minimizing norms manifesting robustness to outliers, with the ℓ1
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norm being one among the most popular choices. The correspond-
ing task is known as ℓ1 regression or the Least Absolute Deviation
problem. It is only recently that efficient methods, for providing
embeddings suitable for ℓ1 minimization, have been developed [5],
[6], [7], [8]. These methods are limited to the randomized sampling
approach, with the associated sampling distribution derived from a
well-conditioned, with respect to the ℓ1 norm, basis of the data
subspace. After sampling, a suitable subset of data, the LAD task
is solved via linear programming in the reduced dimensional space.

In this paper, an alternative route to robust randomized linear
regression is taken. Building upon the observation that outliers can
be detected while operating in a randomized projections produced
embedding, a mechanism for iteratively detecting and excluding
corrupted data is proposed. As a result, the linear regression is
performed using conventional LS approximation in the reduced di-
mensional space, without needing to resort to linear programming-
based LAD techniques. To the best of our knowledge, this is the
first time that robust regression is performed directly on randomized
projections–based embeddings, generated via ℓ2-optimized fast
Johnson-Lindenstrauss transforms.

Notation: Lowercase (uppercase) boldfaced letters stand for
vectors (matrices). The set of real numbers is denoted by R.
Moreover, ∥·∥2, ∥·∥1 are the Euclidean and ℓ1 norms respectively.
Consider that the operation Λ = Supp(r,K), r ∈ Rm turns Λ into
an index set, subset of {1, · · · ,m}, comprising the indices of the
K larger in magnitude coefficients of r and Λc = {1, · · · ,m} \Λ.
For Λ ⊂ {1, · · · ,m}, ∆ ⊂ {1, · · · , n}, then AΛ,∆ is the sub-
matrix of A ∈ Rm,n described by the rows and columns indexed
in the sets Λ and ∆ respectively. If Λ or ∆ is substituted by a dot
(.), then all the rows or all the columns are selected respectively.
The same notation is applied to vectors too.

II. PROBLEM FORMULATION
The typical linear regression model is considered, i.e.,

b = Ax∗ + η, (1)

where A ∈ RN×l is the matrix of N regressors (input vectors),
b ∈ RN is the vector of responses and η the noise vector. Vector
x∗ ∈ Rl comprises the unknown parameters of the linear model,
which, based on least squares (LS) minimization, is estimated by

xLS = argminx∈Rl∥b−Ax∥22. (2)

LS estimation is the most common choice in the over-determined
case, i.e., N > l whenever η is normally distributed. Assuming
for simplicity that A is full rank, then the LS solution is unique
and given by xLS = (ATA)−1AT b. Relying on, e.g., QR
decomposition, the computational complexity of this problem is
O(Nl2), [9].

Randomized methods offer the opportunity for obtaining an
approximation of xLS by solving the LS problem in a reduced
dimensional space:

xR = argminx∈Rl∥b−Ax∥22, (3)
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where b = Rb, A = RA and R ∈ Rd×N with d ≪ N , is a
carefully designed matrix, which maps the N dimensional columns
of A onto a lower dimensional space of dimension d. As it will be
discussed later on, R either performs randomized row sampling or
randomized projection, depending on the way of its construction.
The computational complexity for (3) equals to O(dl2)+TR, where
TR is the computational cost accounting for the construction and
application of matrix R.

Often in practice, the entries of the observed vector b are
sporadically corrupted and turned, therefore, to outliers which
heavily disagree with the adopted model. In this case, the noise
vector can be described as η = n + o where the elements of n
are normally distributed and o is a sparse vector having nonzero
values only at those indices corresponding to corrupted data. In the
presence of outliers, the performance of LS solution can severely
degrade, due to the large residuals appearing (which are squared)
whenever an outlier hits. As a result, one has to resort to cost
functions manifesting robustness to outliers, with the least absolute
deviations (LAD), i.e. xLAD = argminx∈Rl∥b−Ax∥1 being the
one adopted for randomized linear regression in [5], [6], [7], [8].

III. RANDOMIZED ALGORITHMS FOR ℓ2 LINEAR
REGRESSION

All randomization-based methods for ℓ2 linear regression, in one
way or the other, revolve around the seminal Johnson-Lindenstrauss
(JL) lemma and its extensions [10], [1], which asserts that for any
set of l points in RN there exists a linear mapping RN → Rd

with d = O(ϵ−2 log l), so that all pairwise distances among the
points are preserved up to a multiplicative factor between (1− ϵ)
and (1 + ϵ). In the regression problem at hand, the points in
the high dimensional space, are the vector b and the columns
of A and the previously mentioned linear mapping is expressed
with left-multiplication by the matrix R ∈ Rd×N . Such matrices,
which satisfy the property above with constant probability, even
with different dependencies of d, are collectively referred to as JL
transforms. In other words, a JL transform embeds a few points
lying in a high dimensional space onto a lower dimensional one
preserving aspects of their Euclidean geometry. This is why solving
(3) can give similar x∗ estimates with (2).

Besides the remarkable theoretical results, in practice, the effi-
cient employment of randomized methods requires both the compu-
tationally “cheap” construction of R and the efficient performance
of the matrix multiplication RA. Note that if R is a dense random
matrix and/or RA is performed naively, then O(Nl2) multiplica-
tions are required; this is of the same order to the cost asked by the
original LS task in the large dimension. Next, the random sampling
and random projections approaches for succeeding fast construction
and evaluation of R are discussed.

III-A. Randomized Projections Approach
A lot of research effort has been invested for the construction of

JL transform matrices liable to less costly operations. This includes
matrices comprising randomly generated ±1 values [11], sparse
matrices, and structured matrices which involve fast transforms
such as fast Fourier Transform or Walsh-Hadamard transform [12],
[13], [3], [14].

A general form of a fast JL matrix is R = PHD, where
D ∈ RN×N is a diagonal matrix with ±1 values chosen uniformly
at random, H ∈ RN×N is a Hadamard matrix with columns
normalized to unit norm and P ∈ Rd×N is a sparse matrix. In
its simplest form, P is a sampling matrix; i.e., it just collects
randomly d rows of the matrix HD. The multiplication of the
Hadamard matrix with a vector a ∈ RN , costs O(N logN) via
the fast Walsh-Hadamard transform. Moreover, if only k < N
components of the resulted vector Hx are needed, i.e., k is at
most the number of non-zeros in P , then the above complexity

boils down to O(N log k) [13]. Accordingly, the application of a
fast JL matrix to the l columns of the matrix A costs O(lN log k).

Left multiplication ofA with a matrixR such as those discussed
so far, leads to a matrix A comprising a smaller number of rows
with each one of them being a linear combination of the rows of the
original matrix A; i.e., it linear combination of the available data.
This is a key characteristic of the random projections approach.

III-B. Randomized Sampling Approach
The alternative route towards a low dimensional embedding is

via random sampling, according to which R is a row-sampling
operator; that is, it picks d rows from A and the corresponding
coefficients of b imposing, at the same time, a proper re-scaling
on them [15], [2]. The aim is to mainly pick with replacement
those rows of A and the corresponding components of b, which
are the most influential in determining the best LS fit. Information
about the importance of each data vector is offered by the so–called
statistical leverage scores, which are given by

ℓi = ∥Ui,.∥22, (4)

where U is any orthonormal matrix spanning the column space
of A, e.g., a matrix comprising the d left singular vectors. The
major random sampling algorithms use these scores (or estimates
of them) to construct an importance sampling distribution {pi}Ni=1,
with pi = ℓi

l
, in order to sample the rows of A with respect to

it, (see [2] for an indebt discussion on statistical leverage scores
and associated sampling strategies). Intuitively, the larger the pi is
the higher the probability of randomly selecting the ith row of A
becomes. In order to realize the row selection via matrix R, the
latter is first initialized to a zero matrix and then a certain row, say
the ith one, admits a unique nonzero value as follows: An integer
value, say ρ ∈ [1, . . . , N ] is randomly generated according to the
sampling distribution, indicating that the ith row of the reduced
matrixA will be the ρth row ofA re-rescaled by the value 1/(dpρ).
In order this to happen, when left-multiplying with R, its entry
Ri,k admits the value 1/(dpρ).

Similarly to the random projections approach, the fast Walsh-
Hadamard transform plays a key role in the random sampling
methods as well. Indeed, the naive computation of the leverage
scores, i.e. to obtain the left singular vectors via an SVD, costs
as much as the LS minimization in the high dimension. Happily,
leverage scores can be approximated as follows [16]:

ℓ̂i = ∥eTi A(Π1A)†Π2∥22, (5)

where ei is a standard basis vector and the matrices Π1 ∈ Rr1×N ,
Π2 ∈ Rl×r2 are a fast JL transform, e.g. such as the one based
on the Hadamard transform described before, and an ordinary JL
transform, e.g. a matrix whose entries are chosen i.i.d. from a
Gaussian distribution [17].

III-C. Randomized methods for ℓ1 linear regression
As it has already been discussed, in robust regression, the ℓ2

norm minimization is no longer suitable and one escaping route
is to resort to ℓ1 regression. However, in this case, the embedding
methods which preserve Euclidean distances, are no longer valid,
in theory, at least. The explanation for that is fairly simple. The
length, in terms of the ℓ1 norm, of a vector is not invariant under
rotation. As a result, the leverage scores in the ℓ1 scenario, given
by ℓ̄i = ∥Wi,.∥1, i = 1, · · · , N , have to be computed not from
any orthonormal matrix W , spanning the data subspace, but from
one which is well-conditioned in order to preserve ℓ1 distances. It
is only very recently that results in the spirit of the JL transform
were published for the ℓ1 case. It turns out that, the corresponding
transform matrix is Cauchy-distributed [5], [6]. A fast transform of
this type has already been presented, [7], [8].
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In practice, however, the merits of Cauchi-based ℓ1 leverage
scores estimation are observed only when N is way much larger
than l [18]. As a result, it turns out that the orthonormal bases
induced by methods optimized for the ℓ2 case, e.g., [16] can also
be used as well-conditioned basis for the estimation of ℓ1 leverage
scores. This is the approach used in the numerical evaluation
section.

IV. ITERATIVE RANDOMIZED ROBUST REGRESSION
Let Λ ⊂ {1, · · · , N} be the index set indicating the data pairs

which correspond to outliers. Ideally, these data pairs should have
been excluded from A and b before the dimensionality reduction
task. In other words, RAΛc,· and RbΛc should have been used
for the LS estimation of x∗ instead of A and b. Our present work
is built upon the observation that outliers can be detected while
operating in the reduced dimensional space and on top of that,
the corrupted data can be removed from the full dataset, without
taking them back to the high dimensional space. In contrast to
the already established randomized robust estimation methods, the
proposed approach features two novel characteristics, which are
different from any method proposed so far. First, it uses randomized
projections instead of randomized sampling and second it is not
relying on minimization of norms, which are robust to outliers,
such as the ℓ1 norm.

As it was mentioned above, the outlier data, once detected, can
be effectively excluded from A and b while working in the reduced
dimensional space as follows:

RbΛc = b−R.,ΛbΛ, (6)
RAΛc,. = A−R.,ΛAΛ,.. (7)

Moreover, successive application of (6), using subsets of Λ, allows
the data–clearing to be performed progressively, e.g. expelling
outliers one after the other or in groups in an iterative fashion.

Following the discussion in II, when the dimensionality reduc-
tion is performed in the presence of outliers, (1) is written as:

b = Ax∗ + n+Ro, (8)

where n = Rn. Note that if R is a random projection matrix, then
Ro loose the sparsity property, that the high dimensional outlier
vector has, and the energy of the nonzero values of o is spread
across the d dimensions.

Observe from (8) that, the overall noise involved is given by
n + Ro. The first noise term, n = Rn, for R being the
fast JL matrix and due to the orthogonality of the Hadamard
transform is normally distributed. The second one, due to the
central limit theorem and unless S is trivially small, it can be
assumed to be normally distributed as well. In other words, due to
Gaussianity, R renders the problem suitable for LS minimization in
the reduced dimension. However, the noise variance is proportional
to the number of outliers and the magnitude of the outlier vector
components. Accordingly, the LS minimization in the reduced
dimensional can provide a tentative estimate x̂, i.e.

x̂ = argminx∥b̃−Ax∥
2
2, (9)

where b̃ = b− n−Ro is the vector of the noisy observations.
We next turn our attention to ways for detecting data vectors

which correspond to outliers. After replacing x∗ with the tentative
estimate, (8), yields

z = Ro, (10)

where z = b−Ax̂−n. This is the typical problem that compressed
sensing with inaccurate measurements is dealt with, with z being
the noisy observed measurements, o being the unknown sparse
vector andR playing the role of the sensing matrix [19]. Denote the
error vector corresponding to the tentative LS solution as xe = x̂−
x∗, then, Ax̂ = Ax∗+Axe, where the second term contributes to

Table I. Iterative Randomized Robust Linear Regression (IRRLR)

Set Parameters: K, d, I
Generate matrix R = PHD
Compute A[0] = RA,

and b[0] = Rb
FOR i = 1, 2, . . . , I

Step 1: Estimate x̂ via (9)
Step 2: Compute residual, z = b−Ax̂
Step 3: Compute proxy as ψ = RTz

or as ψ = ô via (10)
Step 4: Set Λ = Supp(|ψ|, K)
Step 5: Compute A[i] = A[i−1] −R.,ΛAΛ,.

and b[i] = b[i−1] −R.,ΛbΛ
ENDFOR

the overall noise. The recovery accuracy of o depends on its sparsity
level, i.e. S = ∥o∥0, on some Restricted Isometry Property (RIP)
constant of R and ∥n′∥2, where n′ denotes the overall noise. [19],
[20], [21].

We propose a technique for progressively clearing up the avail-
able data from outliers which is iterative in nature and the reasoning
behind it is explained next: In the presence of large/many outliers,
the error term xe resulting from x̂ is expected to take relatively
large values. This will lead to increased noise in (10) affecting
the estimation accuracy of o. However, the good news is that,
in principle, the proposed method does not require an accurate
estimate of o. It is good enough just to detect a subset or even a
single element of the support of o. If this is succeeded, then the
corresponding outlier data can be omitted from A and b with the
aid of (6). The same procedure is iterated for a number of times
in order to detect more subsets of the set of the remaining outliers,
which are used for further cleaning the available data.

The immunity of the proposed scheme against outliers is en-
hanced due to the following reasons: First, it is true that due to
inaccuracies in the estimates of x̂ and o, it is possible a number
of data to be characterized as outliers without really being so.
However, in big data applications, where a very large pool of data
is available to work with, this is not of major concern. As long as
outliers are detected and excluded from further computations, then
in principle, it is not harmful to expel some healthy data as well.
Second, after the completion of each iteration step, the processed
data are likely to be healthier since they have been purified from
an increased number of outliers. This leads to improved estimates
of x̂ and, hence, it is likely to get more accurate outlier detection
from one iteration to the next.

Because the algorithm does not need a full estimate of o,
the solution of the compressed sensing problem in (10) can be
simplified for computational complexity savings. For this reason,
estimates of subsets of the support of o can be obtained using
as proxy the product ψ = RTz and then Λ = Supp (ψ,K),
where K ≤ N . This approach appears in the first iteration step of
greedy algorithm such as CoSaMP [22]. The algorithmic steps of
the method, hereafter referred to as Iterative Randomized Robust
Linear Regression (IRRLR), are described in Table I.

V. COMPUTATIONAL COMPLEXITY ANALYSIS
According to Table I, the required computational complexity

is analyzed as follows: The computation of A[0] and b[0] costs
O((l + 1)N log k), where k is the number of nonzero values of
matrix P , and it is performed once. The rest of the computations,
corresponding the the steps of the algorithm, are performed I times
and their complexity is: For step 1, the LS task in the reduced
dimension takes O(dl2) and an other d(l+1) is needed for step 2.
Step 3, is rewritten as RTr =DHP Tr, where P Tr costs O(k)
and its Hadamard transform, performed via direct multiplication,

5438



Fig. 1. Performance evaluation (Gaussian A)

costs an extra O(Nk). The evaluation of the diagonal matrix D
just causes at most N sign changes and it is not counted. For step
4, any selection algorithm of complexity O(N) can be employed
for the detection of the Kth larger component and then a single run
across the vector returns the rest of required indices. Finally, step
5, in case that R is pre-computed and stored, it needs O(dKl) or
an extra O(kK) avoiding storage.

With respect to the random sampling using leverage scores
approach, the approximate leverage scores in (5) can be computed
in O((l + 1)N log r1 + lNr2 + r1l

2 + r2l
2), [16], where for

comparison purposes r1 can be considered to be equal to d and r2
can be set equal to O(log l). Apart from that, large computational
expenses result from the LAD optimization, which does not admit a
closed form solution. As a result, one has to either resort to linear
programming using, e.g. interior-point methods with complexity
poly(d). Approximate solution with lower complexity could also
be a choice, e.g., the ADMM approach in [23].

VI. NUMERICAL EXAMPLES
In this section the performance of the proposed method in

investigated with the aid of synthetic numerical examples. First,
an example of l = 100, with N = 217 data vectors in total and
A ∈ R217×100 Gaussian distributed is adopted in order to examine
the capacity of IRRLR in detecting outliers when operating in a
reduced dimensionality equal to d = 3000. Additive Gaussian noise
is added accounted of 30dB SNR and S = 2000 outliers are also
imposed in randomly picked positions. Their values are randomly
drawn from a Gaussian distribution N (0, 1)∗µ, where µ is chosen
to be equal to the larger in magnitude value of b = Ax∗. This
guarantees that most of the outliers will not pop up over the noise
floor rending them easily to withdraw via direct thresholding.

The results are shown in Fig. 3, where the figure on top shows
the total number of outliers detected as a function of the number of
iterations, where in each iteration S/5 data vectors are excluded for
further processing. The figure in bottom shows the corresponding
error in terms of log10(∥x∗ − x̂∥2). Observe that, around 30
iterations are needed in order to clean most of outliers and reach
a performance error floor. Note that, in all simulation examples
matrix P is assigned only a single nonzero value per row, i.e.,
k = d.

Next, the performance of IRRLR is evaluated against the LAD
estimation where dimensionality reduction is realized via random
sampling based on the approximate leverage scores as it was
described above and according to [16], [18]. In this case, LAD is
minimized with an interior point method. The results are shown in
Fig. 1 and Fig. 1 and they correspond to Gaussian- and T-distributed
input vectors respectively. The order of the T-Distribution was set
equal to 2. Small order values is known to produce highly irregular
leverage scores, [24].

In Fig. 1, left, the reduced dimension is kept fixed and equal
to d = 3000 and displays the performance for different number
of outliers. In each iteration S/5 data vectors are considered to be
outliers and they are expelled from R and b. It turns out that, when
an adequate number of iterations is used (in particular I = 50), then

Fig. 2. Performance evaluation (T-Distributed A)
IRRLR outperforms LAD for all the evaluated range of outliers
number. Note that this is realized with a lower computational
burden. The curve denoted by circles shows the behaviour of the
method when a number of iterations is large enough for clearing
up to S = 1000 outliers. In Fig. 1, right, the reduced dimension
is varying taking values from 500 up to 5000, whereas the number
of outliers is kept fixed and equal to S = 1000. It is observed that
when d is getting as small as the number of outliers, which are
present, then IRRLR fails to perform as good as the randomized
sampling LAD, at least performing a moderate number of iterations.
On the contrary, in the rest of the cases, i.e. for d > 1500 it
performs somewhat better.

WhenA is T-distributed with order 2, then the results are similar
with the difference that LAD is somewhat better than IRRLR in all
tested configurations as it is shown in Fig. 2. This is expected, since
leverage scores estimates are particularly suited to detect and favor
the most significant data vectors, whereas IRRLR in its current form
treats all data equivalently. In any case, it should be accounted the
fact the IRRLR exhibits much faster running times.

Fig. 3. Capability of IRRLR to accumulatively detect outliers

VII. CONCLUSIONS AND FUTURE WORK
The approach for robust randomized linear regression proposed

here departs from recently proposed state-of-the-art randomized
sampling algorithms, which are based on leverage scores. The
presented preliminary results show that similar performance for a
wide range of configurations can be achieved without employing
computationally heavy linear programming techniques. The method
was kept as simple as possible and it serves as a proof of concept.
Following the same rationale, improvements can be made in several
stages of the algorithm and are left for future work. For example,
more advanced compressed sensing approaches can be employed
for partial support estimation. Moreover, it is flexible to exploit
a priori information about the characteristics of the outliers. For
example, in many applications, outliers are appearing in bursts.
In such scenarios block sparse estimation is expected to enhance
performance.
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